期刊文献+

基于切片模型的快速混合学习算法 被引量:1

A hybrid algorithm based on chips
下载PDF
导出
摘要 针对传统BP神经网络训练收敛速度慢、易陷入局部极小点的问题,将遗传算法与误差放大的BP学习算法相结合,提出基于切片模型的快速混合学习算法.该算法通过将传统神经网络的训练过程划分为许多小的训练切片,并利用遗传算法的并行寻优特性,对采用误差放大的BP训练过程进行监督.通过及时发现收敛速率较快的个体和过滤陷入局部极小点的个体,来保证网络训练的成功率和实现快速向全局最优区域逼近的目的.仿真实验表明,该算法在不增加网络隐层节点数的情况下,显著地提高了网络的收敛精度和泛化能力. A hybrid algorithm based on chips(HABC) is proposed to speed up the training of back-propagation neural networks, and to improve the performances of neural networks. The algorithm divide the training of neural networks into many training chips, and an improved BP algorithm based on magnified error signal is performing on those chips. The genetic algorithm is introduced to optimize the results of chips training when a chip training is accomplished. Then the next chip training is carrying out on the optimized result. Therefore, the HABC obtains the ability of searching the global optimum solution relying on these optimal operations, and it is easy to be parallel processed. The simulation experiments show that this algorithm can effectively avoid failure training caused by randomizing the initial weights and thresholds, and solve the slow convergence problem resulted from the Flat-Spots when the error signal becomes too small.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第5期685-688,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60273083)
关键词 BP算法 人工神经网络 遗传算法 饱和区域 局部最优 Back-Propagation algorithm artiicial neural network genetic algorithm flat - spots local opti- mumvb v mmmvzb
  • 相关文献

参考文献6

二级参考文献28

  • 1吴敏毓,医学免疫学,1995年
  • 2苑希民 李鸿雁 刘树坤.人工神经网络与遗传算法在洪水预报中的应用[M].北京:中国水利水电出版社,2002..
  • 3徐丽娜.神经网络控制[M].哈尔滨:哈尔滨工业大学出版社,1998..
  • 4R Parekh,K Balakrishnan,V Honavor.An empirical comparison of flat-spot elimination techniques in back-propagation networks.The 3rd Workshop on Neural Networks-WNN'92,Auburn,2002
  • 5靳蕃.神经计算智能基础·原理·方法.成都:西南交通大学出版社,2000(Jin Fan.The Intelligence Basis of Neural Computing:Theory & Method (in Chinese).Chengdu:Southwest Jiaotong University Press,2000)
  • 6S E Fahlman.Faster-learning variations of back propagation:An empirical study.In..D Touretzky,G E Hinton,T J Sejnowski eds.In:Proc of the 1988 Connectionist Models Summer School.San Mateo,CA:Morgan Kaufmann Publishers,1988.38~51
  • 7R A Jacobs.Increased rates of convergence through learning rate adaptation.Neural Networks,1988,1(4):295~308
  • 8阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社,2000(Yan Pingfan,Zhang Changshui.Artificia Neural Network and Simulating-Evolution Computation(in Chinese).Beijing:Tsinghua University Press,2000)
  • 9M Wilamowski Bogdan,Chen Yixin.Efficient algorithm for training neural networks with one hidden layer.In:M Aleksander ed.Proc of the Int'l Joint Conf on Neural Networks,vol 3.Washington,DC:IEEE Press,1999.1725~1728
  • 10蔡自兴,徐光祐.人工智能及其应用.北京:清华大学出版社,1996(Cai Zixing,Xu Guangyou.Artificial Intelligence:Principles & Applications(in Chinese) .Beijing:Tsinghua University Press,1996)

共引文献154

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部