期刊文献+

NONTRIVIAL SOLUTIONS FOR A CLASS OF NON-DIVERGENCE EQUATIONS ON POLARIZABLE CARNOT GROUP

可极化Carnot群上一类非散度型方程的非平凡解(英文)
下载PDF
导出
摘要 Some new properties of polarizable Carnot group are given.By choosing a proper constant a nontrivial solution of a class of non-divergence Dirichlet problem on the polarizable Carnot group is constructed.Thus the multi-solution property of corresponding non-homogeneous Dirichlet problem is proved and the best possible of LQ norm in the famous Alexandrov-Bakelman-Pucci type estimate is discussed. Some new properties of polarizable Carnot group are given. By choosing a proper constant a nontrivial solution of a class of non-divergence Dirichlet problem on the polarizable Carnot group is constructed. Thus the multi-solution property of corresponding nonhomogeneous Dirichlet problem is proved and the best possible of L^Q norm in the famous Alexandrov-Bakelman-Pucci type estimate is discussed.
机构地区 Dept.of Appl.Math.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第2期157-164,共8页 高校应用数学学报(英文版)(B辑)
基金 SupportedbytheNationalNaturalScienceFoundationofChina(10371099).
关键词 Dirichlet problem polarizable Carnot group Alexandrov-Bakelman-Pucci estimate. 可极化 Carnot群 非散度型方程 非平凡解
  • 相关文献

参考文献6

  • 1Balogh Z M,Tyson J T.Polar coordinates in Carnot groups,Math Z,2002,241:697-730.
  • 2Danielli D,Garafalo N,Nhieu D M.Notions of convexity in Carnot groups,Comm Anal Geom 2003,11(2):263-341.
  • 3Lanconelli E.Nonlinear equations on Carnot groups and curvature problems for CR manifolds.Rend Mat Acc Lincoi,2003,14(9):227-238.
  • 4Kaplan A.Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms,Trans Amer Math Soc,1980,258 (1):1-22.
  • 5Folland G B.Subelliptic estimates and function spaces on nilpotent Lie groups,Arkiv for Math,1975,13:161-207.
  • 6Folland G B.A fundamental solution for a subelliptic operator,Bull Amer Math Soc,1973,39:373-376.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部