期刊文献+

德士古气化炉炉温软测量建模及其工程实现 被引量:5

Modeling of Texaco Gasifier Soft Measurement and Its Engineering Actualization
下载PDF
导出
摘要 以焦化厂德士古煤气化炉为对象,根据煤气化流程的工艺分析,针对德士古气化炉膛温度软测量的需要,研究了辅助变量选择,数据采集与处理,以及利用模糊神经网络和RBF网络建立炉温软测量模型等问题,建立了炉温软测量系统。该系统在不增加设备投资的条件下,通过工厂信息集成处理和先进的监控技术,提高生产装置的工艺操作水平和管理水平为目的。现场调试运行结果表明应用本文方法建模精度较高,系统效果良好。该系统能够充分发挥DCS系统和网络计算机的功能优点,完全克服了在测温元件损坏时对生产的不利影响。 In light of the technical flow of coal gasification and demand of Texaco gasifier temperature soft measurement, many questions about modeling, such as selections of auxihary variable, collection and disposal of fields data, are discussed. And the modeling of gasifier soft measurement is composed by two methods, which are fuzzy neural network and radial basic function network. Without increase of equipment, the technical operation and management level can be improved, through factory integrated information and advanced supervisal technology. The application results show that the modeling method is excellent and the precision is high. The disadvantage of produce process caused by the thermocouple burned out is eliminated.
出处 《化工自动化及仪表》 EI CAS 2006年第3期59-63,共5页 Control and Instruments in Chemical Industry
基金 上海市曙光计划资助项目(03SG26)
关键词 软测量 模型化 模糊神经网络 德士古气化炉 soft measurement modeling fuzzy neural network Texaco gasifier
  • 相关文献

参考文献4

  • 1王文西,李青,等.德士古水煤浆气化技术讲义[Z].上海:上海焦化总厂,1999.
  • 2FELIPE F, JULIO G. A Takagi-Sugeno Model with Fuzzy Inputs Viewed firm Multidimensional Interval Analysis[J]. Fuzzy Sets and System(S0165-0114) ,2003,135:39- 61.
  • 3JANG J S R. ANFIS: Adaptive-network-based Fuzzy Inference System[J]. IEEE Tram SMC ( S0118-9472 ), 1993,23 ( 3 ) :665- 685.
  • 4RANK, ERHARD. Application of Bayesian Trained RBF Networks to Nonlinear Time-series Modeling[J]. Signal Processing(S0165-1684) ,2003,83 : 1393-1410.

同被引文献35

  • 1张磊,胡春,钱锋.BP改进算法及其在乙二醇精制软测量中的应用[J].自动化仪表,2005,26(6):31-34. 被引量:8
  • 2王新刚,侍洪波.一种改进的FNN及其在德士古炉温软测量中的应用[J].工业控制计算机,2006,19(3):9-11. 被引量:1
  • 3Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995: 181-197.
  • 4Suykens J. Least Squares Support Vector Machines[M].Singapore: World Scientific Publishing Co Pte Ltd, 2002:71-89.
  • 5Suykens J, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3) : 293- 300.
  • 6Suykens J, Barbanter J De, Lukas L, et al. Weighted least squares support vector machines: Robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1 4): 85-105.
  • 7Cummins D J, Andrews C W. Iteratively re-weighted partial least squares: A performance analysis by Monte Carlo simulation[J]. Journal of Chemometrics, 1995, 9(6): 489-507.
  • 8Suykens Johan A K, Gestel Tony Van, Brabanter Jos De. Least Squares Support Vector Machines[M]. Singapore: World Scientific Publishers,2002.
  • 9Reeves Colin R, Rowe Jonathan E. Genetic Algorithms- Principles and Perspective [M]. Boston : Kluwer Academic Publishers, 2003.
  • 10雷英杰,张善文,李续武,等.Matlab遗传算法工具箱及应用[M].西安:瞳安电子科技大学出版社,2006.

引证文献5

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部