期刊文献+

用倾向最大回报的协同进化优化多Agent合作

Using Co-evolutionary of Biasing Maximal Rewards Search for Optimal Multi-agent Behaviors
下载PDF
导出
摘要 进化计算是多Agent系统学习的一个有用技术。在多Agent系统研究中的某些领域,一种常用的方法是协同进化多Agent合作。研究已经指出:在某些领域,协同进化系统更倾向于稳定而不是成效(即收敛到局部优化解)。这与多Agent系统研究的目的(追求利益最大化)是不相符的。为此,文章提出了一种基于混沌机制的倾向于最大回报的协同进化算法,改进了Wiegand等人的工作,。理论分析和仿真实验表明,这种基于混沌机制的倾向能促使协同进化向更优化的全局稳定点收敛,从而帮助协同进化算法在某些合作的多Agent领域发现更好的解(甚至是最优解)。 Evolutionary computation is a useful technique for learning behaviors in multi-agent systems.In some research of multi-agent systems,one natural and popular method is to co-evolve multi-agent behaviors,Recent research has suggested that co-evolutionary systems may favor stability rather than performance in some domains (convergence to local optimal point).This is not suitable with the aim of multi-agent systems research (the aim is reaching for optimal benefits ) .This paper presents the search method of biasing maximal rewards based on chaos system,improves the work of Wiegand et al.Theory analysis and experiment indicates that this bias can make co-evolutionary to convergence upon the whole optimal stability point.
作者 高坚 张伟
出处 《计算机工程与应用》 CSCD 北大核心 2006年第16期38-40,120,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号60496323) 山东省教育厅计划资助项目(编号:JSJ03J1)
关键词 多AGENT系统 协同进化 最大回报 混沌机制 multi-agent systems,co-evolutionary,maximal rewards,chaos
  • 相关文献

参考文献12

  • 1H Iba.Emergent cooperation for multiple agents using genetic programming [C].In:J Koza ed,Late Breaking Papers of the Genetic Programming Conference,Stanford,CA, Stanford University Bookstore,1996: 66-74
  • 2S Luke,C Hohn,J Farris et al.Co-evolving soccer softbot team coordination with genetic programming[C].In:RoboCup-97:Robot Soccer World Cup I (Lecture Notes in AI No.1395), Berlin,Springer-Verlag, 1998:398-411
  • 3Annie Wu,Alan C Schultz,Arvin Agah.Evolving control for distributed micro air vehicles[C].In:IEEE International Symposium on Conference on Computational Intelligence in Robotics and Automation (CIRA-99), 1999
  • 4Lawrence Bull,Terrence C Fogarty,M Snaith.Evolution in multi-agent systems:Evolving communicating classifier systems for gait in a quadrupedal robot[C].In:L Eshelman ed.Proceedings of the Sixth International Conference on Genetic Algorithms(ICGA),Morgan Kaufmann,1995: 382-388
  • 5L Bull.Evolutionary computing in multi-agent environments:Partners[C].In:Thomas Baeck ed.Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA), Morgan Kaufmann, 1997: 370-377
  • 6Jeffrey K Bassett,Kenneth A De Jong.Evolving behaviors for cooperating agents[C].In:Z Ras ed.Proceedings from the Twelfth International Symposium on Methodologies for Intelligent Systems,Charlotte,NC,Springer-Verlag, 2000 : 157-165
  • 7R Paul Wiegand,William Liles,Kenneth De Jong.An empirical analysis of collaboration methods in cooperative co-evolutionary algorithms[C].In:L Spector ed.Proceedings of the Genetic and Evolutionary Computation Conference(GECCO) 2001 ,Morgan Kaufmann,2001:1235-1242
  • 8S Ficici,J Pollack.A game theoretic approach to the simple co-evolutionary algorithm[C].In:M Schoenauer,K Deb,G Rudolph eds.Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature(POPSH VI),Springer-Verlag,2000:467-476
  • 9R Paul Wiegand,William Liles,Kenneth De Jong.Modeling variation in cooperative co-evolution using evolutionary game theory[C].in:Richardo Poli,Jonathan Rowe,Kenneth De Jong eds.Foundations of Genetic Algorithms(FOGA) VII,Morgan Kaufmann,2002:231-248
  • 10Liviu Panait,R Paul Wiegand,Sean Luke[C].In:Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (UCAI-03), Acapulco, Mexico, 2003: 635-658

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部