期刊文献+

Nanoelectronic devices resonant tunnelling diodes grown on InP substrates by molecular beam epitaxy with peak to valley current ratio of 17 at room temperature 被引量:1

Nanoelectronic devices resonant tunnelling diodes grown on InP substrates by molecular beam epitaxy with peak to valley current ratio of 17 at room temperature
下载PDF
导出
摘要 This paper reports that InAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm^2 has been obtained for diodes with AlAs barriers of ten monolayers, and an Ino.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope. This paper reports that InAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm^2 has been obtained for diodes with AlAs barriers of ten monolayers, and an Ino.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1335-1338,共4页 中国物理B(英文版)
关键词 resonant tunnelling diode InP substrate molecular beam epitaxy high resolution transmission electron microscope resonant tunnelling diode, InP substrate, molecular beam epitaxy, high resolution transmission electron microscope
  • 相关文献

参考文献13

  • 1Capssso F, Sen S and Beltram F 1990 High-Speed Semiconductor Devices (New York: Wiley) p465
  • 2Chen K J, Maezawa K and Yamamoto M 1995 Appl. Phys.Lett. 67 3608
  • 3Reddy M, Martin S C, Molnar A C, Muller R E, Smith R P, Siegel P H, Mondry M J, Rodwell M J W, Kroemer H and Allen S J 1997 IEEE Electron Device Lett. 58 218
  • 4Ozbay E and Bloom D 1991 IEEE Electron Device Lett.EDL-12 480
  • 5Mehdi I, Haddad G I and Mains R K 1989 Microw. Opt.Technol. Lett. 2 172
  • 6Chang L L, Esaki L and Tsu R 1974 Appl. Phys. Lett. 24 593
  • 7Fujii T, Inata T, Ishii K and Hiyamizu S 1986 Electron.Lett. 22 191
  • 8Celii F G, Kao Y C, Beam E A, Duncan W M and Moise T S 1993 J. Vac. Sci. Technol. B 11 1018
  • 9Celii F G, Harton T B, Kao Y C and Moise T S 1995 Appl. Phys. Lett. 66 19
  • 10Goldman V J, Tsui D C and Cunningham J E 1987 Phys.Rev. Lett. 58 1256

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部