摘要
Extreme sensitivity to initial values is an intrinsic character of chaotic systems. The evolution of a chaotic system has a spatiotemporal structure containing quasi-periodic changes of different spatiotemporal scales. This paper uses an empirical mode decomposition (EMD) method to decompose and compare the evolution of the time-dependent evolutions of the x-component of the Lorenz system. The results indicate that the sensitivity of intrinsic mode function (IMF) component is dependent on initial values, which provides some scientific evidence for the possibility of long-range climatic prediction.
Extreme sensitivity to initial values is an intrinsic character of chaotic systems. The evolution of a chaotic system has a spatiotemporal structure containing quasi-periodic changes of different spatiotemporal scales. This paper uses an empirical mode decomposition (EMD) method to decompose and compare the evolution of the time-dependent evolutions of the x-component of the Lorenz system. The results indicate that the sensitivity of intrinsic mode function (IMF) component is dependent on initial values, which provides some scientific evidence for the possibility of long-range climatic prediction.