期刊文献+

一种新的基于区别矩阵的决策表属性约简方法 被引量:2

A New Method of Attribute Reduction of Decision Table Based on Discernibility Matrix
下载PDF
导出
摘要 利用反例指出目前基于区别矩阵计算决策表核属性方法的局限性,并指出根本原因是:U/ind(C)中的等价类的A C不相容性.目前,对于决策表的相容性问题的研究都停留在单个对象上,而本文的研究表明,要计算决策表的属性约简以及核属性,关键是要考虑U/ind(C)中的等价类的相容性.给出了基于U/ind(C)的等价类的相容性的属性约简定义和核属性定义,并讨论了一种新的基于区别矩阵的属性约简和核属性计算方法.最后证明本文方法是正确的并用相同实例验证了该方法的有效性. With counterexamples the paper points out errors in present methods based on discernibility matrix for calculating the core of a decision table and points out that the key reason of errors is inconsistency of equivalent classes in. At present, the studies of consistency of decision table focus on the single object. But the study of the paper shows that the key of the computation of core attributes of decision table is the consistency of equivalent classes in. The definitions of attributes reduction and core attributes are given based on the consistency of equivalent classes in. A new method of the computation of attribute reduction and core attributes is discussed based on a discernibility ma- trix. In the end, the method of this paper is proved and the same examples show that it is valid.
出处 《南昌大学学报(工科版)》 CAS 2006年第2期160-163,共4页 Journal of Nanchang University(Engineering & Technology)
关键词 决策表 属性约简 区别矩阵 decision table attribute reduction discernibility matrix
  • 相关文献

参考文献8

二级参考文献22

  • 1曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 2Pawlak Z. Rough Sets[J]. International Journal of Computer and Information Sciences, 1982 ( 11 ): 341 - 356.
  • 3Pawlak Z. Rough Sets, Theoretical Aspects of Reasoning about Data[M]. Boston, MA: Kluwer Academic Publishers, 1991.
  • 4Theresa Beaubouf, Petry Frederick E, Gurdial Arora. InformationTheoretic Measures of Uncertainty for Rough Sets and Rough Relational Database [J ]. Journal of Information Sciences, 1998(109): 185 - 195.
  • 5Sukhamay Kundu. The Normal Form of a Granular Fuzzy Function [J]. Fuzzy Sets and Systems, 2001(124): 97- 107.
  • 6Amitava Roy, Pa Sankar K. Fuzzy Discretization of Feature Space for a Rough Set Classifier[J]. Pattern Recognition Letters, 2003(24): 895 - 902.
  • 7Swiniarski Roman W, Andrzej Skowron. Rough Set Methods in Feature Selection and Recognition[J]. Pattern Recognition Letters,2003 (24): 833 - 849.
  • 8UCI Machine Learning Repository [EB/OL]. http://www. ics.uci. edu/~mlearn/, 2002.
  • 9Rosetta. A Rough Set Toolkit for Analyzing Data [ EB/OL ].http://www. idi. ntnu. no/aleks/rosetta/, 2002.
  • 10Pawlak Z, Grzymala-Busse J, Slowinski R, et al. Rough sets[J] . Communication of the ACM, l995, 38(11): 89-95.

共引文献480

同被引文献14

  • 1Pawlak Z. Rough sets-theoretical aspects of reasoning about data [M]. Dordrecht :Kluwer Academic Publishers,1991,9-30.
  • 2Hu Xiao Hua ,Cercone N. Learning in relational databases:a rough set approach[J].Computational Intelligence, 1995,11(2):323-337.
  • 3Wong S K M ,Ziarko W. On Optimal Rules in Decision Tables [J]. Bulletin of the Polish Academy of Sciences Mathematics, 1985,33(11 ) : 693- 696.
  • 4刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 5Jackson A G, Pawlak Z, LeClair S R. Rough Sets Applied to the Discovery of Materials Knowledge [ J ]. Journal of Alloys and Compounds, 1998,279 ( 1 ) : 14 - 21.
  • 6Inuiguchi M. Rough Set Based Rule Induction from Two Decision Tables [ J ]. European Journal of Operational Re- search, 2007,181 (3) :540 - 1553.
  • 7CHEN De - gang, WANG Chang - zhong, HU Qing - hua. A New Approach to Attribute Reduction of Consistent and In- consistentcovering Decision Systems with Covering Rough Sets [J]. Information Sciences,2007, 177 (17) :3500-3518.
  • 8CHEN De - gang, WANG Chang - zhong, HU Qing - hua. A New Approach to Attribute Reduction of Consistent and In- consistentcovering Decision Systems with Covering Rough Sets [J]. Information Sciences,2(I)7, 177 (17) :3500 -3518 .
  • 9秦奕青,杨炳儒,徐章艳.基于Skowron分明矩阵的有效属性约简算法[J].北京科技大学学报,2009,31(3):398-404. 被引量:6
  • 10申锦标,邓春燕,吕跃进.一种基于差别矩阵的新的属性约简方法[J].重庆工学院学报(自然科学版),2009,23(9):84-87. 被引量:2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部