期刊文献+

一类泛函边值问题正解的存在性

Existence of Positive Solutions of a Functional Boundary Value Problem
下载PDF
导出
摘要 为了讨论一类泛函边值问题正解的存在性问题,运用锥拉伸与压缩不动点定理,在非线性项满足比超线性或次线性更为一般的条件下,解决了这类泛函常微分方程边值问题正解的存在性,并获得了该类泛函常微分方程边值问题正解的存在性定理. For discussing the existence of the positive solution of functional boundary value problem, the law of cone stretching and fixed - point is applied. When the non - liner item satisfies the super - liner or under - liner conditions,the existence of the positive solution of this functional boundary differential calculas is solved. And the law of it is acquired.
作者 沈文国
出处 《兰州工业高等专科学校学报》 2006年第2期46-49,共4页 Journal of Lanzhou Higher Polytechnical College
关键词 泛函边值问题 正解 不动点 functional boundary value problem positive solution cone fixed- point
  • 相关文献

参考文献3

  • 1Il′in VA,Moiseev E I.Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects[J].Differential Equations,1987,23(7):803~810.
  • 2II′in VA,Moiseev E I.Nonlocal Boundary Value Problem of the Second Kind for a Sturm 2 Liouville Operatortions[J],Dfferential Equations 1987,23(8):979~987.
  • 3Ma R.Positive Solutions of a Nonlinear Three-Point Boundary Value Problem[J].Elec Journal of Differential Equations,1999,(34):1~8.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部