摘要
为了讨论一类泛函边值问题正解的存在性问题,运用锥拉伸与压缩不动点定理,在非线性项满足比超线性或次线性更为一般的条件下,解决了这类泛函常微分方程边值问题正解的存在性,并获得了该类泛函常微分方程边值问题正解的存在性定理.
For discussing the existence of the positive solution of functional boundary value problem, the law of cone stretching and fixed - point is applied. When the non - liner item satisfies the super - liner or under - liner conditions,the existence of the positive solution of this functional boundary differential calculas is solved. And the law of it is acquired.
出处
《兰州工业高等专科学校学报》
2006年第2期46-49,共4页
Journal of Lanzhou Higher Polytechnical College
关键词
泛函边值问题
正解
锥
不动点
functional boundary value problem
positive solution
cone
fixed- point