期刊文献+

独立成分分析在表情识别中的应用 被引量:8

The Application of Independent Component Analysis in Facial Expression Recognition
下载PDF
导出
摘要 独立成分分析(ICA)是一种基于信号高阶统计特性的分析方法,本文尝试将这种方法应用于人脸表情的特征提取。首先对预处理后的图像用FastICA算法计算得到解混矩阵以及此训练样本集的影像独立基成分,然后利用影像独立基来构造一个投影空间,最后利用待识别的表情图像在这个空间上作空间影射,所得到得投影系数用以实现分类。为了减少运算量,本文研究了降维的训练样本集的独立成分分析。 ICA is an efficient method for the analysis of high order signals. In this article, the feature of facial expression is extracted by the application of ICA. Firstly, FastICA algorithm is used for computing decomposing matrix and independent components after necessary preprocessing is done. Then, we can use these independent components to construct a projection subspace. Finally, test sample is projected to the subspace and projection coefficients are obtained and computer can use these coefficients to recognize which expression it belongs to. In order to reduce the calculation task of computer, size reduction of training data is also studied in this paper.
机构地区 北京科技大学
出处 《微计算机信息》 北大核心 2006年第06Z期287-289,121,共4页 Control & Automation
基金 "现代信息科学与网络技术"重点实验室资助项目(TDXX0503)
关键词 表情识别 独立成分分析 空间影射 facial expression recognition,ICA,subspace projection
  • 相关文献

参考文献6

  • 1Bouchra Abboud, Franck Davoine, Mo Dang. Expressive face recognition and synthesis for visual interaction[J/OL]. IEEE CVPR Workshop on Computer Vision and Pattern Recognition for Human Computer Interaction, Madison, USA, June 2003.
  • 2王聃,贾云伟,林福严.人脸识别系统中的特征提取[J].微计算机信息,2005,21(07X):53-55. 被引量:18
  • 3Aapo Hyvrinen, Erkki Oja. Independent Component Analysis:Algorithms and Applieations[J/OL]. Neural Networks, 2000. 13(4-5): p.411-430.
  • 4杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 5陈华富,尧德中.独立成分分析及其应用的研究进展[J].生物医学工程学杂志,2003,20(2):366-370. 被引量:19
  • 6Aapo Hyv?rinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J/OL]. IEEE Trans. on Neural Networks, 10(3):626-634, 1999.

二级参考文献32

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3[1]Jutten C, Herault J. Blind separation of source, Part I: An adaptive algorithm based on neuromimetic architecture. SP, 1991, 33∶1
  • 4[3]Xu Y, Yao DZ. A new method for extracting characteristic signal in epileptic EEG. Chinese Journal of Biomedical Engineering(English version), 1999; 8∶41
  • 5[4]Kobayashi K, James CJ, Nakahori T, et al. Isolation of epleptiform discharges from unaverged EEG by independent component analysis. Clinical Neurophysiology, 1999; 110∶1755
  • 6[5]Lee TW, Grolami M, Jbell A, et al. A unifying information-theoretic framework for independent component analysis. Computer and Mathematic with Application. 2000;39∶1
  • 7[6]Comon P. Independent component analysis, a new concept? SP, 1994; 36∶287
  • 8[7]Bell AJ, Sejnowski J. An information maximization approach to blind separation and deconvolution. Neural Comp, 1995; 7∶1129
  • 9[8]Cardoso JF. Infomax and maximum likelihood for blind source separation. IEEE SP Letter, 1997; 4∶112
  • 10[10]Karhunen J, Oja E, Wang L, et al. A Class of neural networks for Independent component analysis. IEEE Trans NN, 1997, 8∶486-503

共引文献174

同被引文献76

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部