期刊文献+

基于径向基函数神经网络和NLJ优化算法的精馏塔控制 被引量:4

Optimization control of a distillation column based on the RBF neural network and NLJ algorithm
下载PDF
导出
摘要 精馏塔是一个非常重要的操作单元,具有较强的非线性和时变性,很难进行基于机理建模分析的实时优化控制.通过对精馏塔的相关过程变量进行主元分析确定了5~6个关键变量作为神经网络的输入,建立了精馏塔多个质量指标的RBF神经网络的软仪表模型,实现了这些质量指标的在线估计.选取其中部分软仪表模型作为优化控制系统中的约束条件函数模型和目标函数模型,采用NLJ优化算法(变收缩系数的随机搜索算法)获取最优的决策变量设定值,从而得到了满足生产质量要求的精馏塔产品的最大采出,实现了精馏塔的卡边优化控制. A distillation column is a very important operating unit in the process of chemical production. Its nonlinear and time varying characteristics make the modeling and analyzing based on system identification very difficult. In order to realize the optimization control of a distillation column, the paper presents some soft-sensing models of quality targets based on the RBF neural network. They are used as the constrained condition and target function modes required by the NIJ optimization control to get their online estimations. Then try to find the optimizing set value of the key process variable to get the maximum output of the distillation column by using the NLJ optimization algorithm.
出处 《工业仪表与自动化装置》 2006年第3期33-36,共4页 Industrial Instrumentation & Automation
关键词 主元分析 径向基函数神经网络 软测量 NLJ优化算法 principal component analysis RBF neural network soft-sensing NLJ optimization algorithm
  • 相关文献

参考文献6

二级参考文献29

  • 1田亮,曾德良,刘吉臻,赵征.简化的330MW机组非线性动态模型[J].中国电机工程学报,2004,24(8):180-184. 被引量:77
  • 2[1]Rumelhart, D. E. , Hinton, G. E. , and Williams, R. J: Learning Internal Representations by Erroe propagation in parallel Distributed Processing[J]. MIT Press ,cambridge, 1986,1: 318-- 362
  • 3[2]Wong ,Y. How radical basis functions works[J]. Proc. Int. Joint Conf. Neural networks,seattle,WA.1991 ,2:133-138.
  • 4[3]Renals ,S. radial basis function network for speech pattern classification[J]. Electron. Lett. , l. 1989,25:437-439.
  • 5[4]Zurada,J. M. ,Zigoris,D. M. ,Arohime , P. B. ,and desai,M. Classification of printed characters using muti - layer feedforward neural networks IEEE Proc. 34Ty Midwest Symp. Circutis syst. , 1991,2: 191 - 202.
  • 6[5]nath, R. , Jackson, W. , &Jones , T. W.. A Comparison of classical and the linear programming approaches to the classification problem in discriminant analysis[J ]. Journal of Statistical computation and Stimulation, 1992,41( 1 ): 73-93.
  • 7[6]T. Song , Y. Shimada.K. Suzuki.H. Sayama. Automated Fault Tree Synthesis Using Event Relation Matrix[J]. Journal of the Society of Plant Engineers Japan, 1997 ,18(4):8-15.
  • 8范永胜,徐治皋,陈来九.基于动态特性机理分析的锅炉过热汽温自适应模糊控制系统研究[J].中国电机工程学报,1997,17(1):23-28. 被引量:205
  • 9Gonzalez,G.D.Soft sensors for processing plants[C].Intelligent Processing and Manufacturing of Materials,1999.IPMM'99.proceedings of the Second International Conference on,1999(1):59-69.
  • 10陈来九.热工过程自动调节原理和应用[M].南京:东南大学出版社,1997..

共引文献79

同被引文献34

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部