摘要
应用BP(误差反向传播算法)、AGA(自适应遗传算法)和AGA-BP神经网络对发电机定子超高频局部放电的三种类型进行了模式识别。结合AGA和BP算法各自的优点,构造了AGA-BP混合算法作为神经网络的学习算法。实验结果表明,AGA-BP神经网络既解决了BP神经网络对初始权值敏感和容易局部收敛的问题,又提高了AGA神经网络的收敛速度、稳定性和求解质量。
Using BP-NN, AGA-NN and AGA-BP-NN, we distinguished between three types of partial discharge pattern appearing in generator stator. By combining adaptive genetic algorithm(AGA) with BP algorithm, this paper presents AGA-BP hybrid algorithm to train neural network(NN). Tests gave satisfactory results of the classification process. Compared with BP-NN and AGA-NN, AGA-BP-NN can overcome the entrapment in local optimum of BP-NN and the premature of AGA-NN. Thus, the convergence, discrimination and generalization ability of AGA-BP-NN is improved remarkably.
出处
《大电机技术》
北大核心
2006年第1期36-40,共5页
Large Electric Machine and Hydraulic Turbine
基金
山东省自然科学基金(Y2004F15)