摘要
给出了Banach空间一致凸的一个新的充要条件:设λ,μ∈(0,1),λ+μ=1,f:R+R+是单调递增且可微的严格凸函数,X是Banach空间,则X是一致凸的当且仅当对任意ε>0,存在δ>0,使得当‖x‖≤1,‖x-y‖≥ε时,有f(‖λx+μy‖)<λf(‖x‖)+μf(‖y‖)
A new sufficient and necessary condition is given for uniformly convex Banach spaces. The main result is the following theorem. Theorem Suppose that λ,μ∈(0,1),λ+μ=1,f:R^+→R^+ is a increasing, convex function and X is a Banach space. Then X is uniformly convex if and only if for everye ε〉 0 there existsδ〉0 such that f(||λx+μy||)〈λf(||x||)+μf(||y||)-δ
for all ||x||≤1and y∈x satisfying ||x-Y||≥ε
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第3期1-4,共4页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10471113)
关键词
BANACH空间
一致凸
充要条件
严格凸函数
Banach space
uniformly convex
sufficient and necessary condition
strictly convex function