期刊文献+

一致凸Banach空间的一个新的特征性质 被引量:2

A New Characteristic Property of Uniformly Convex Banach Spaces
下载PDF
导出
摘要 给出了Banach空间一致凸的一个新的充要条件:设λ,μ∈(0,1),λ+μ=1,f:R+R+是单调递增且可微的严格凸函数,X是Banach空间,则X是一致凸的当且仅当对任意ε>0,存在δ>0,使得当‖x‖≤1,‖x-y‖≥ε时,有f(‖λx+μy‖)<λf(‖x‖)+μf(‖y‖) A new sufficient and necessary condition is given for uniformly convex Banach spaces. The main result is the following theorem. Theorem Suppose that λ,μ∈(0,1),λ+μ=1,f:R^+→R^+ is a increasing, convex function and X is a Banach space. Then X is uniformly convex if and only if for everye ε〉 0 there existsδ〉0 such that f(||λx+μy||)〈λf(||x||)+μf(||y||)-δ for all ||x||≤1and y∈x satisfying ||x-Y||≥ε
作者 魏林 吴行平
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期1-4,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10471113)
关键词 BANACH空间 一致凸 充要条件 严格凸函数 Banach space uniformly convex sufficient and necessary condition strictly convex function
  • 相关文献

参考文献9

  • 1Clarkson J A. Uniformly Convex Spaces[J]. Trans Amer Math Soc, 1936, 40: 396- 414.
  • 2Milman D P. On Some Criteria for the Regularity of Spaces of Type (B) [J]. Dokl Akad Nauk SSSR, 1938, 20: 243 - 246.
  • 3Pettis B J. A Proof That Every Uniformly Convex Space is Reflexive [J]. Duke Math J, 1939, 5 : 249 - 253.
  • 4Day M M. Reflexive Banach Spaces Not Isomorphic to Uniformly Convex Spaces [J]. Bull Amer Math Soc, 1941, 47:504 - 507.
  • 5Diestel J. Geometry of Banach Spaces Selected topics[M]. Berlin-New York: Springer-Verlag, 1975.
  • 6俞鑫泰.Banach空间几何理论[M].上海:华东师范大学出版社,1984..
  • 7邓磊,夏霞.一致凸Banach空间的一个特征性质[J].西南师范大学学报(自然科学版),2003,28(3):341-343. 被引量:7
  • 8安世全,唐春雷.关于一致凸Banach空间的注记[J].西南师范大学学报(自然科学版),2003,28(4):540-543. 被引量:4
  • 9夏霞,邓磊.一致凸Banach空间的一个特征不等式[J].四川师范大学学报(自然科学版),2002,25(2):151-153. 被引量:4

二级参考文献12

  • 1俞鑫泰.Banach空间几何理论[M].上海:华东师范大学出版社,1984..
  • 2Clarkson J A. Uniformly convex spaces [J]. Trans Amer Math Soc, 1936, 40:396 -414.
  • 3Curarii V I. On the differential properties of the modulus of convexity in a Banach space (in Russian) [J]. Mat Issled, 1976, 2: 141- 148.
  • 4Milman J I. Geometric theory of Banach space H. Geometry of the unit ball [J] . Uspehi Mat Nauk, 1971, 26:73 - 150.
  • 5Goebel K, Kirk W A. Topics in metric fixed point theory [M]. Cambridge: Press Syndicate of the University of Cambridge, 1990. 110.
  • 6Clarkson J A. Uniformly Convex Spaces [J]. Trans Amer Math Soc, 1936, 40:396 - 414.
  • 7Milman D P. On Some Criteria for the Regularity of Spaces of Type (B) [J]. Dokl Akad Nauk SSSR, 1938, 20: 243- 246.
  • 8Pettis B J. A Proof that Every Uniformly Convex Space is Reflexive [J]. Duke Math J, 1939, 5:249-253.
  • 9Day M M. Reflexive Banach Spaces not Isomorphic to Uniformly Convex Spaces [J]. Bull Amer Math Soc, 1941, 47: 504- 507.
  • 10Diestel J. Geometry of Banach Spaces-Selected Topics [M]. Berlin: Springer-Verlag, 1975.

共引文献20

同被引文献14

  • 1姚喜妍.Hilbert空间H上正交射影对的性质[J].西南师范大学学报(自然科学版),2004,29(6):899-902. 被引量:2
  • 2Wimmer H K. Inertia Theorems for Matrices Controllability [J]. Linear Algebra and Its Applications, 1974, 41(2): 337 -343.
  • 3Cain B. An Inertia Theory for Operators on a Hilbert Space [J]. Math Anal Appl, 1974, 41(1): 97 - 114.
  • 4Cain B. Inertia Theory [J]. Linear Algebra and Its Applications, 1980, 30(3): 211 -240.
  • 5J. A. Clarkson, Uniformly Convex Space, Trans. Amer. Math. Soc. 1936, 40: 396-414.
  • 6O. Hanner, On the Uniform Convexity of and, Ark. Mat. 1956, 3: 239-244.
  • 7J.Diestel, Geometry of Banach Spaces--Selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975.
  • 8G. Kasparov and Guoliang Yu, The Coarse Geometric Novikov Conjecture and Uniform Convexity, arXiv: Math/0507599 V1 [math. OA] 28 Jul 2005.
  • 9B. Kekka, P. de La Harpe and A. Valette, Kazhdan's Property T, 1- 145, Cambridge University Press, 2008.
  • 10宋述刚,洪云飞.关于共轭双线性算子与泛函[J].西南大学学报(自然科学版),2007,29(12):40-44. 被引量:4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部