期刊文献+

混和图的特征值分布(英文)

On Eigenvalues Distribution of Mixed Graphs
下载PDF
导出
摘要 建立了混和图的特征值与匹配数、直径以及拟悬挂点数的关系,推广了简单图上若干关于特征值分布的结论. In this paper, we establish some relations between the eigenvalues and matching number, diameter, and the number of quasi-pendant vertices of mixed graphs, which extend some known result of simple graphs on eigenvalues distribution.
出处 《数学研究》 CSCD 2006年第2期124-128,共5页 Journal of Mathematical Study
基金 SupportedbyAnhuiProvincialNaturalScienceFoundation(050460102) CNSF(10571163,30570431),NSFofDepartmentofEducationofAnhuiprovince(2004kj027,2005kj005zd) FundofInnovationforgraduatesofAnhuiUniversity,FoundationofInnovationTeamonBasicMathematicsofAnhuiUniversity,FoundationofTalentsGroupConstructionofAnhuiUniversity,ExcellentYouthScienceandTechnologyFoundationofAnhuiProvinceofChina(06042088) andyouthfoundationofAnhuiUniversityofScienceandTechnologyofChina(2005(27)).
关键词 混和图 特征值 匹配数 拟悬挂点 Mixed graph Laplacian eigenvalue Matching number Quasi-pendant vertex
  • 相关文献

参考文献11

  • 1Bapat R B, Grossman J W, Kulkarni D M. Generalized matrix tree theorem for mixed graphs. Linear and Multilinear Algebra, 1999,46:299-312.
  • 2Zhang Xiaodong, Li Jiongsheng. The Laplacian spectrum of a mixed graph. Algebra Appl. , 2002, 353:11-20.
  • 3范益政.关于混合图的特征向量的结构(英文)[J].黑龙江大学自然科学学报,2004,21(4):50-54. 被引量:1
  • 4Grone R, Merris R,Sunder V S. The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl.1990, 11:218-238.
  • 5Merris R. Laplacian matrices of graphs: a survey. Linear Algebra Appl. , 1998, 197/198: 143-176.
  • 6Guo J M, Tan S W. A relation between the matching number and the Laplacian spectrum of a graph.Linear Algebra Appl. , 2001, 325: 71-74.
  • 7Petrovic' M, Gutman I, Lepovic' M, and Milekic' B. On bipartite graphs with small number of Laplacian eigenvalues greater than two and three. Linear and Multilinear Algebra, 2000, 47: 205-215.
  • 8Fan Yizheng, Li Jiongsheng. On graphs with small number of Laplacian eigenvalue greater than two. Linear Algebra Appl. , 2003, 360:207-213.
  • 9Fan Yizheng. Largest eigenvalue of a unicyclic mixed graph. Applied Mathematics A Journal of Chinese Universities (English Series), 2004, 19:140- 148.
  • 10Zhang Xiaodong, Luo Rong. The Laplacian eigenvalues of a mixed graph. Linear Algebra Appl. , 2003,353: 109-119.

二级参考文献11

  • 1BAPAT R B, GROSSMAN J W. Kulkarni D M.Generalized matrix tree theorem for mixed graphs[J]. Linear and Multilinear Algebra, 1999, 46: 299-312.
  • 2BONDY J A, MURTY U S R. Graph Theory with Applications[M]. New York: American Elsevier Publishing Co, 1976.
  • 3FAN Y Z. On spectra integral variations of mixed graph[J].Linear Algebra Appl, 2003, 374: 307-316.
  • 4FIEDLER M. Algebraic connectivity of graphs[J]. Czechoslovak Math J, 1973, 23: 298-305.
  • 5FIEDLER M. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory[J]. Czechoslovak Math J, 1975, 25:619-633.
  • 6GROSSMAN J W, KULKARNI D M. Schochetman I E.Algebraic graph theory without orientations[J]. Linear Algebra Appl,1994,212/213: 289-308.
  • 7KIRKLAND S, FALLAT S. Perron components and algebraic connectivity for weighted graphs[J]. Linear and Multilinear Algebra, 1998, 44: 131-148.
  • 8KIRKLAND S, NEUMANN M, SHADER B. Characteristic vertices of weighted trees via Perron values[J]. Linear and Multilinear Algebra, 1996, 40: 311-325.
  • 9MERRIS R. Laplacian matrices of graphs: a survey[J].Linear Algebra Appl, 1994, 197/198, 143-176.
  • 10ZHANG X D, LI J S. The Laplacian spectrum of a mixed graph[J]. Linear Algebra Appl, 2002, 353: 11-20.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部