摘要
讨论关于回转椭球静态场求解的一般方法,借助回转椭圆坐标系,静态场问题的一般解可以用实宗量和虚宗量勒让德函数以及余弦函数形式表出,使得结果更为简明和系统化。所得结果可以直接应用到椭球导体电场、尖端效应、介质椭球极化以至双极化雷达测量降水问题等,具有相当具体的实用价值。
A general method of solving static field problems of spheroidal bodies is discussed in detail.In spheroidal coordinate systems the general solutions of static electric field with spheroidal geometrical configurations can be expressed by using associated Legendre functions of real or imaginary argument and cosine functions.It makes the results more concise and systematized. The results can be applied directly to electric field of spheroidal conductors , polarization of dielectric spheroid and precipitation measurement by bi-polar radars. Therefore the method is not only of theoretical but practical interests as well.
关键词
电场
回转椭球静态场
坐标系
三角函数
Static field of spheroidal bodies
Spheroidal coordinate system
Associated Legendre functions of positive integer order
Trigonometrical functions
Solution.