摘要
Fracture-surface topography analysis (FRASTA) was successfully used to simulate the process of crack and calculate parameters of crack such as the crack opening angle (COA) and crack-tip opening angle (CTOA). But because the amount of calculation is large, errors are often made during the course of calculation. FRASTA simulation software, namely fracture surface analyst (FSA ) is developed and a series of center-cracked tension (CCT) and double edge notched (DEN) specimens of different materials with different sizes are tested, their fracture surfaces are scanned by non-contact 319 scanning system and the elevation data of the fracture surfaces is recorded. FSA used the recorded elevation data of fracture surfaces to simulate the process of crack based on the principle of FRASTA. Results show that FSA can accurately simulate the process and calculate the parameters of crack.
Fracture-surface topography analysis (FRASTA) was successfully used to simulate the process of crack and calculate parameters of crack such as the crack opening angle (COA) and crack-tip opening angle (CTOA). But because the amount of calculation is large, errors are often made during the course of calculation. FRASTA simulation software, namely fracture surface analyst (FSA ) is developed and a series of center-cracked tension (CCT) and double edge notched (DEN) specimens of different materials with different sizes are tested, their fracture surfaces are scanned by non-contact 319 scanning system and the elevation data of the fracture surfaces is recorded. FSA used the recorded elevation data of fracture surfaces to simulate the process of crack based on the principle of FRASTA. Results show that FSA can accurately simulate the process and calculate the parameters of crack.