摘要
本文推广了实对称矩阵理论中的Wielandt—Hoffman定理到复数矩阵上.利用这个结果给出了两正定厄米特矩阵乘积的特征值的新估计.最后,还给出了算术平均一几何平均不等式,Holder不等式和Minkowski不等式在矩阵迹上的类似.
First,the Wielandt-Hoffman theorem on real symmetric matrix is extended to complex case.Second,using the extended result,new estimations of trigenvalue for the product of two positive Hermite matrices are given,which imporves the results in reference [4].Finally,some inequalities similar to arithmetic average-geometry average inequality,Hoder inequality and Min.inequality are also given in the case of matrix trace.
出处
《淮北煤师院学报(自然科学版)》
1996年第2期18-21,25,共5页
Journal of Huaibei Teachers College(Natural Sciences Edition)
关键词
矩阵迹
特征值
不等式
埃米尔特矩阵
Hermite matrix,thace of matrix,eigenvalue
inequality