期刊文献+

非线性有限元分析与分叉问题数值方法

Nonlinear Finite Element Analysis and Numerical Methods for Bifurcation Problems
下载PDF
导出
摘要 非线性有限元分析和分叉问题的数值方法研究是当今计算力学领域中受重视的研究方向之一。虽然在单元构造、非线性分析与分叉数值方法方面已有长足进展,但迄今为止,可以用于实际复杂结构分叉问题的方案还存在不少困难。本文对有限元的发展作了简要回顾,并介绍了一种有效的用于分叉计算的数值方法。文末以实际上常见的平面杆系结构为对象。 Research on nonlinear finite element analysis and numerical methods for bifurcation problems is one of the noticed directions in the field of computational mechanics at present.There have been a lot of advances in element construction,nonlinear analysis and numerical methods for bifurcation problems,but up to now,there are few of the programmes which can be used in numerical analysis for bifurcation problems of complicated structures.In this paper,firstly,the history of finite element method and numerical methods for nonlinear analysis and bifurcation problems are reviewec.Then the pseudo-arc-length continuation method,as one of the important methods for nonlinear problems,is introduced.Finally,a practical scheme for solving large deflection of structures of planar bar systems including bifurcation problems,is given.
作者 王晓春
出处 《西南交通大学学报》 EI CSCD 北大核心 1996年第3期234-237,共4页 Journal of Southwest Jiaotong University
基金 中国博士后科学基金
关键词 非线性 有限元 分叉 数值方法 计算力学 nonlinear finite element bifurcation numerical method
  • 相关文献

参考文献3

  • 1王晓春,博士后科技成果展示及人才学术交流会.中国博士后论文集,1995年
  • 2雷晋干,分歧问题的逼近理论与数值方法,1993年
  • 3朱正佑,分支问题的数值计算方法,1989年

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部