摘要
首先于实数域内.用sturm比较定理证得f"-xf=0的非平凡解的零点集含有可列个负数;尔后延拓到复数域内,把特解Airy积分Ai(z)用Macdonald函数表示.通过复围线积分计算证得Ai(z)仅有负数的零点,从而获得了f"-zf=0的非平凡解有且仅有可列个负数零点的结论.
First, in the real field,applying the Sturm's the orem,it is proved that every nonordinary solution of f'─xf=0 has countable negative zero points. Next, in the complex field, by use of the Macdonald function representation of Airy integral,it is proved that the special solution Ai(z) of f'─zf=0 only has negative zero points. Finally that every non─ordinary solution of f'-zf=0 has and only has countable negative zero points is obtained.
出处
《山东师范大学学报(自然科学版)》
CAS
1996年第2期7-12,17,共7页
Journal of Shandong Normal University(Natural Science)
关键词
解
零点
解析延拓
CAUCHY定理
微分方程
zero points of a solution
analytic continuation
Airy integral
Macdonaldfunction
Cauchy theorem.