摘要
建立一个含有分布时滞的革新传播模型{U(t)=-αU(t)-ρU(t)+ρ,A(t)=∫^+∞ 0 αE(τ)U(t-τ)dτ-ρA(t)-kA(t).研究了分布时滞对传播过程的影响,讨论了正平衡点的存在惟一性及其渐近稳定性.当分布时滞的核函数取δe-^δt时,证明了正平衡点是绝对渐近稳定的.
An innovation diffusion model with distributed time delay is proposed {U(t)=-αU(t)-ρU(t)+ρ,A(t)=∫^+∞ 0 αE(τ)U(t-τ)dτ-ρA(t)-kA(t). and its effect on the diffusion process is studied. The existence and uniqueness of a positive equilibrium is proven and the sufficient conditions for its asymptotic stability have been obtained. When the kernel function of the distributed time delay takes δe-^δt , the positive equilibrium is absolutely asymptotically stable.
出处
《北华大学学报(自然科学版)》
CAS
2006年第3期193-196,共4页
Journal of Beihua University(Natural Science)
关键词
革新传播模型
分布时滞
正平衡点
渐近稳定性
Innovation diffusion model
Distributed time delay
Positive equilibrium
Asymptotic stability