摘要
指出了正则单形的新性质,如棱长为a的n维正则单形Ωn的体积V有下述公式1()!2Vn ann=+,任何n维正则单形?n的所有顶点角之和1 12 21n i(1)arcsin(1)(1 1)nin n∑=+α=++?+n,任何n维正则单形的所有二面角之和1 1≤i<∑j≤n+βij=???n 2+1arccos1/n,并借助于矩阵理论对已有的性质给出直观性的证明。
:The regular simplex was summarized, which pointed out new characters of regularsimplex. For example, the volume's formula of n dimension regular simplex is V=√n+1/n!(α/√2)n is length edge);The vertex angles' sum of any n dimension regular simplex Ωn .is n+1∑i=1αi=(n+1)arcsin(1+n)1/2(1+1/n)n/2 ;The dihedral angle's sum of any n dimension regular simplex is ∑1≤i≤j≤n+1βij=〔n+12〕arccos1/n .At the same time, the existing characteristics were certificated by the theory on matrix.
出处
《辽宁工学院学报》
2006年第3期202-205,共4页
Journal of Liaoning Institute of Technology(Natural Science Edition)
关键词
正则单形
棱长表示的体积公式
界面体积表示的体积公式
顶点角之和
二面角之和
regular simplex
volume expression expressed with length of edge
volume expressionexpressed with volume of interface
sum of vertex angles
sum of dihedral angel