摘要
基于PYTHIA5.6蒙特卡罗模拟,作为一种唯象的研究,对于LHCPP对撞中来自H→r+r-,Drell-Yan,以及tt和W+W-过程的eμ事例,用一具有多个输出网点的前馈式神经元网络进行鉴别,对各物理过程均获得了满意的选择效率和本底压低水平.该研究适用于未来中能质量区Higgs粒子和top夸克的寻找,以及W+W-物理的实验研究.
Based on PYTHIA5.6 simulation and as a phenomenological study,a feed-forward neural network with multiple output neurons is built to identify and separate different ed events from H→r+r-,Drell-Yan,tt and W+ W-processes in LHC pp collision.Satisfactory selection efficiency and background suppression level are achieved.The method can thus be used in the future for experimental search for Higgs particles in intermediate energy range,top quark search,or W+W- physics study.
基金
国家自然科学基金
关键词
HIGGS粒子
TOP夸克
pp对撞
神经网络
eμ事例
feed-forward neural network
Higgs and top quark search
LHC pp collision
selection efficiency.