期刊文献+

利用沿周期轨道演化态构造谐振环的半经典波函数(英文)

Semiclassical Wave Function of a Resonance Torus by Evolving State along Periodic Orbits
下载PDF
导出
摘要 介绍了如何利用沿着环上的周期轨道演化态构造一个环绕数为n/m,且满足E inste in-B rillou in-Ke ller量子化条件的谐振环的半经典波函数.数值上,我们选择一个环绕数为29/39的谐振环(非常接近于量子化环(8,3))构造波函数. In this paper we show the construction of a semiclassical wave function for a resonance torus with winding number n/m, and satisfying the Einstein-Brillouin-Keller (EBK) quantization condition, by evolving a state along periodic orbits on the torus. Numerically, we choose a resonance torus of winding number 29/39, a very close periodic torus convergent to the quantizing torus corresponding to state (8,3), to build wave function.
作者 杨双波
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期35-39,共5页 Journal of Nanjing Normal University(Natural Science Edition)
关键词 谐振环 EBK量子化条件 稳定性方程 Maslov指数 resonance torus, EBK quantization condition, stability equation, Maslov index
  • 相关文献

参考文献5

  • 1Yang Shuangbo,Michael E Kellman.Addendum to direct trajectory method for semiclassical wave functions[J].Phys Rev A,2002,65(3):034103-1-034103-4.
  • 2Maslov V P,Fedoriuk M V.Semiclassical Approximations in Quantum Mechanics[M].Boston:D Reidel Pub Co,1981:1 -50.
  • 3Yang Shuangbo,Michael E Kellman.Direct trajectory method for semiclassical wave functions[J].Phys Rev A,2000,62(2):022105-1 -022105-5.
  • 4Yang Shuangbo,Michael E Kellman.Perspective on semiclassical quantization:How periodic orbits converge to quantizing tori[J].Phys Rev A,2002,66(5):052113-1 -052113-11.
  • 5Yang Shuangbo,Michael E Kellman.Semiclassical wave function in the chaotic region from a quantizing cantorus[J].Chemical Physics,2006,322 (1):30-40.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部