期刊文献+

交换群上五度弧传递Cayley图 被引量:2

Arc-Transitive Cayley Graphs of Valency Five on Abelian Groups
下载PDF
导出
摘要 对交换群上五度弧传递Cayley图进行了分类,证明了交换群上五度Cayley图X弧传递的充分必要条件是X同构于Qd4,Q5,K5,5,K6或者K6,6-6K2. We give a complete dassification of are-transitive Cayley graphs of valency five on Abelian groups, and prove that a Cayley graph X of valency five on Abelian groups is arc-transitive if and only if X is isomorphic to Q4^d, Q5, K5,5, K6 or K6,6 - 6K2.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2006年第3期72-76,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 北京交通大学科技基金资助项目(2004SM055)
关键词 弧传递图 s-传递图 正规CAYLEY图 arc-transitive graph s- transitive graph normal Cayley graph
  • 相关文献

参考文献1

  • 1Young-Gheel Baik (Department of Applied Mathematics Pukyong National University Pusan 608-737, Korea) FENG Yanquan (Department of Mathematics, Northern Jiaotong University, Beijing 100044, China) Hyo-Seob Sim (Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea).THE NORMALITY OF CAYLEY GRAPHS OF FINITE ABELIAN GROUPS WITH VALENCY 5[J].Systems Science and Mathematical Sciences,2000,13(4):425-431. 被引量:17

共引文献16

同被引文献13

  • 1徐明曜,张勤海,周进鑫.关于交换群上的Cayley有向图的正规性[J].系统科学与数学,2005,25(6):700-710. 被引量:4
  • 2Bondy J A, Murty U S R. Graph Theory with Applications [M]. London:The Macmillan Press Ltd, 1976.
  • 3Chris Godsil,Gordon Royle. Algebraic Graph Theory [M]. New York:Springer,2004.
  • 4PRAEGER C E,XU M Y.A Characterization of A Class of Symmetric Graphs of Twice Prime Valency[J].Europ J Combin,1989,10:91-102.
  • 5GARDINER A,PRAEGER C E.On 4-Valent Symmentric Graphs[J].Europ J Combin,1994,15:375-381.
  • 6MILLER R C.The Trivalent Symmetric Graphs of Girth at Most Six[J].J Combin Theory,1971,10:163-182.
  • 7XU M Y.A Note on One-Regular Graphs of Valency 4[J].Chinese Science Bull,2000,45:2160-2162.
  • 8XU M Y,XU J.Arc-Transitive Cayley Graphs of Valency at Most Four on Abelian Groups[J].Southeast Asian Bull Math,2001,25:355-363.
  • 9BIGGS N.Algebraic Graph Theory[M].2nd ed.London:Cambridge University Press,1993.
  • 10XU M Y,Introduction to Finite Group[M].2nd ed.Science Press,1999.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部