摘要
本文讨论了线性模型Y=AX+V中的稳健参数估计,假定观测误差V=(v_1,v_2,…,v_n)~T中有m个(m<<n)为粗差(位置未知),服从分布N(0,λσ~2)(λ充分大),其余n-m个服从分布N(0,σ~2)(σ~2已知),在该统计模型的基础上,导出本文的稳健估计方法,为消除对杠杆点处异常值的伪装,文中提出了再次迭代算法。经模拟计算表明,该稳健估计方法与Huber方法、Hampel方法等相比较,有较快的收敛速度和较强的辨识小粗差的能力,再次迭代算法对辨识杠杆点处的异常值是有效的。
This paper deals with the estimation of robust parameters in linear model Y=AX
+V. Supposing among observational errors V=(v1, v2,..., vn). there exist m gross er-
rors (m<<n) which are subject to distribution N(0, λσ2) (λ being sufficiently large). the
remainding n-m errors are subject to distribution N(0,σ2) (σ2 being known). Based on
this statistical modle. a robust estimation method is presented. Also suggested is a re-iter-
ation algorithm to remove the mask of the outliers at leverage points. Simulation com-
putations indicated that this robust estimation method has faster convergence rate and
stronger ability of identifying smaller gross errors oyer Huber' and Hample' methods,
andthe re-iteration algorithm is certainly very effective for identifying outliers at leverage
points.
出处
《测绘学报》
EI
CSCD
北大核心
1990年第1期22-32,共11页
Acta Geodaetica et Cartographica Sinica
基金
国家自然科学基金资助项目