期刊文献+

关于不动点变分不等式与最优化的一个定理 被引量:1

On a Theorem of the Variational Inequality and Optimization of Fixed Point
下载PDF
导出
摘要 对文献[2]中定理12进行研究,并在此基础上得到了一个判断不动点为最优解的必要条件,而且把该定理推广到了拟-半-E-凸函数与伪-半-E-凸函数的情形,拓展了该定理的应用范围. Based on the theorem 12 in the literature [2], a necessary condition that a fixed point becomes an optimal resolution is obtained. Furthermore, this theorem is generalized to the case of pseudo-semi-E- convex function and quasi-semi-E-convex function and the extent of its usage is enlarged.
作者 焦合华
出处 《重庆工学院学报》 2006年第5期133-135,共3页 Journal of Chongqing Institute of Technology
关键词 E-凸集 半-E-凸函数 伪-半-E-凸函数 拟-半-E-凸函数 E-convex set semi-E-convex function pseudo-semi-E-convex function quasi-semi-E-convex function
  • 相关文献

参考文献2

  • 1Youness E A.E-Convex Sets,E-Convex Functions,and E-Convex Programming[J].Journal of Optimization Theoryand Applications,1999,102(2):439-450.
  • 2Chen X S.Some Properties of Semi-E-Convex functions[J].Math.Appl,2002,275(3):251-262.

同被引文献11

  • 1万波.一般混合变分不等式的改进隐式迭代算法[J].重庆工学院学报,2007,21(3):42-44. 被引量:1
  • 2Yang X M,Yang X Q,Teo K L. Generalized invexity and generalized invariant monotonicity[J]. Journal of Optimiza- tion Theory and Applications, 2003,117 (3): 607-625.
  • 3Jabarootian T, Zafarani J. Generalized invariant monotonici- ty and invexity of nondifferentiable functions[J]. Journal of Global Optimization, 2006,36 (4) : 537 564.
  • 4Youness E A. E-convex sets, E convex functions, and E- convex programming[J]. Journal of Optimization Theory and Application, 1999,102(2) :439-450.
  • 5Yang X M. E-convex set, E-convex function, and E-convex programming[J]. Journal of Optimization Theory and Ap- plications, 2001,109(3) :699-704.
  • 6Syaua Y R. Some properties of E-convex functions[J]. Ap- plied Mathematics Letters, 2005,18 (9) : 1074-1080.
  • 7Luo J. Some properties of E-Pseudo-convex functions and the applications in mathematical programming[J]. Journal of Chongqing Technology and Business University, 2008, 25(5) :449-453.
  • 8Avriel M, Diewert W. Generalized goncavity[M]. New York Plenum Publishing Corporation, 1988.
  • 9Ruiz-Garzon G, Osuna-Gomez R,Ruflan-Lizana A. General ized invex monotonicity[J]. European Journal of Operation- al Research, 2003,144 (3) : 501-512.
  • 10Fan K. A generalization of Tyehono's fixed point theorem [J]. Mathematical Annalen,1961(142) :391-402.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部