摘要
Global warming is an inarguable fact. Permafrost is experiencing a change due to climate warming in Qinghai-Tibet Plateau, such as the decreasing of permafrost table, the rising of permafrost temperature, etc. On the basis of analysing the permafrost change under the climate change and engineering action, the thermal regime and spatial distribution of permafrost are predicted for air temperature rising 1℃ and 2.6℃ after 50 years in this paper. The results show that climate change results in the larger change for the thermal regime and spatial distribution of permafrost. Permafrost change will produce the great effect on the Qinghai-Tibet Railway engineering, not only resulting in the decreasing of permafrost table beneath the roadbed, but also resulting in thawing settlement due to the thawing of ground ice near permafrost table. The idea of cooling roadbed and actively protecting permafrost for the Qinghai-Tibet Railway engineering could adjust and control the permafrost thermal state, some better methods are provided to ensure the engineering stability in the areas of warm permafrost and high ice content.
Global wanning is an inarguable fact. Permafrost is experiencing a change due to climate warming in Qinghai-Tibet Plateau, such as the decreasing of permafrost table, the rising of permafrost temperature, etc. On the basis of analysing the permafrost change under the climate change and engineering action, the thermal regime and spatial distribution of permafrost are predicted for air temperature rising 1℃ and 2.6℃ after 50 years in this paper. The results show that climate change results in the larger change for the thermal regime and spatial distribution of permafrost. Permafrost change will produce the great effect on the Qinghai- Tibet Railway engineering, not only resulting in the decreasing of permafrost table beneath the roadbed, but also resulting in thawing settlement due to the thawing of ground ice near permafrost table. The idea of cooling roadbed and actively protecting permafrost for the Qinghai-Tibet Railway engineering could adjust and control the permafrost thermal state, some better methods are provided to ensure the engineering stability in the areas of warm permafrost and high ice content.
基金
KnowledgeinnovationprojectofChineseAcademyofSciences"InteractionBetweenQinghaiTibetRailwayProjectandthePermafrostandItsEnvironmentalEffect"(KZCXLSW04)and‘973’nationalkeybasicresearchanddevelopmentprogramme(2002CB412704)