期刊文献+

A Roadbed Cooling Approach for the Construction of Qinghai-Tibet Railway 被引量:2

A Roadbed Cooling Approach for the Construction of Qinghai-Tibet Railway
下载PDF
导出
摘要 Over one half of the permafrost along the Qinghai-Tibet Railway is “warm" and approximately 40% ice-rich. Under global warming, the construction of the Qinghai-Tibet Railway needs to consider climate changes over the next 50~100 years. Recent estimates indicate that the air temperature on the plateau will increase by 2.2~2.6℃ by 2050. Thus, the key to the success of the railway construction lies in preventing the permafrost underlying roadbeds from thawing. It has been more than 100 years since the first railway was build over permafrost. A frost damage ratio of greater than 30% has been reported for all the railroads built in permafrost regions. Based upon the experience and lessons learned from roadway constructions over permafrost, this paper proposes a more proactive design approach for the construction of the Qinghai-Tibet Railway. This approach focuses on cooling down the roadbed by lowering the ground temperature and is different from the passive method of preventing permafrost from thawing by simply increasing thermal resistance (e.g., increasing embankment height and using insulating materials). This “roadbed cooling" design approach is especially relevant to “warm" and ice-rich permafrost areas. A number of measures can be taken to cool down the roadbed, including proper selection of roadbed material, and configurations to adjust solar radiation, heat convection, and heat conduction patterns in and/or around the roadbed. Over one half of the permafrost along the Qinghai-Tibet Railway is "warm" and approximately 40% ice-rich. Under global warming, the construction of the Qinghai-Tibet Railway needs to consider climate changes over the next 50 - 100 years. Recent estimates indicate that the air temperature on the plateau will increase by 2.2- 2.6℃ by 2050. Thus, the key to the success of the railway construction lies in preventing the permafrost underlying roadbeds from thawing. It has been more than 100 years since the first railway was build over permafrost. A frost damage ratio of greater than 30 % has been reported for all the railroads built in permafrost regions. Based upon the experience and lessons leamed from roadway constructions over permafrost, this paper proposes a more proactive design approach for the construction of the Qinghai-Tibet Railway. This approach focuses on cooling down the roadbed by lowering the ground temperature and is different from the passive method of preventing permafrost from thawing by simply increasing thermal resistance (e. g., increasing embankment height and using insulating materials). This "roadbed cooling" design approach is especially relevant to "warm" and ice-rich permafrost areas. A number of measures can be taken to cool down the roadbed, including proper selection of roadbed material, and configurations to adjust solar radiation, heat convection, and heat conduction patterus in and/or around the roadbed.
作者 Cheng Guodong
出处 《工程科学(英文版)》 2006年第2期158-165,共8页 Engineering Sciences
基金 KnowledgeinnovationprogrammeofChineseAcademyofSciences(KZCX1_SW_04),Nationalnaturalsciencefoundationprogject(90102006),"973"nationalkeybasicresearchanddevelopmentgrogramme(2002CB412704)
关键词 青藏铁路 永久冻结带 路基冷却方法 全球变暖 cooled roadbed Qinghai-Tibet Railway permafrost global wanning
  • 相关文献

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部