期刊文献+

目标场法在悬浮超导球体的球形线圈设计中的应用 被引量:1

The applications of target field approach in designs for spherical coils levitating a superconducting sphere
下载PDF
导出
摘要 文中把目标场法引入到悬浮超导球体的球形线圈设计中,根据目标场法产生均匀磁场的原理,通过离散化绕组来近似处理球形线圈在超导球体和球形线圈的间隙内产生均匀磁场的电流密度分布规律。利用有限元分析和验证,在超导球体与球形线圈之间的间隙内产生了具有很好均匀性的悬浮磁场,这会明显提高超导球体悬浮的刚度和稳定性。 In this paper, target field approach is introduced to applications in designs for spherical coils levitating a superconducting sphere, According to the principle of uniform magnetic field deduced from target field approach, through the discrete current distribution patterns to simulate the role of current distribution which can produce uniform magnetic field in the gap between the superconducting sphere and spherical coils, A suspension magnetic field with good uniformity which can apparently enhance the stiffness and stability of superoondueting levitation is verified by analysis by the finite element method.
出处 《低温与超导》 CAS CSCD 北大核心 2006年第3期183-185,209,共4页 Cryogenics and Superconductivity
关键词 超导悬浮 球形线圈 目标场法 Superconducting levitation, Spherical coils, Target field approach
  • 相关文献

参考文献4

  • 1John M Goodkind. The superconducting gravimeter. Review of Science Instruments, 1999,70 ( 11 ).
  • 2白烨,王秋良,余运佳,夏平畴.一种基于目标场法的球型线圈设计方法[J].中国电机工程学报,2004,24(6):132-136. 被引量:11
  • 3Bai Ye, Wang Qiuliang, Yu Yunjia, et al. Target field approach for spherical coordinates. IEEE Trans. Appl. Superconduct,2004,14(2).
  • 4白烨.磁导航外科手术系统电磁问题研究.北京:中国科学院电工研究所博士学位论文,2004.

二级参考文献13

  • 1Abramowitz M, Stegun I . Handbook of mathematical functions[M]. Washington: National Bureau of Standards. Reprinted by New York:Dover Publications, 1968.
  • 2Lawarence K F, Stuanrt C. Anovel target-field method for finite-length magnetic resonance shim coils:I[J]. Zonal shims.J.Phys. D:Appl. Phys,2001, 34(10): 3447-3455.
  • 3Petropoulos L S, Martens M A. An MRI elliptical coil with minimum inductance[J]. Meas. Sci.Technolo, 1993, 4(2): 349-356.
  • 4Chew W C. Waves and fields in inhomogeneous media[M]. New York:IEEE Press, 1995.
  • 5Turner R. A target field approach to optimal coil design[J]. Phys. D:Appl. Phys, 1986, 19(1): 147-151.
  • 6Leupold H A, Tilak A. Permanent magnet spheres: Design,construction, and application[J]. Appl. Phys, 2000,87(9):4730-4734.
  • 7Haiying Liu. Petropoulos L S. Spherical gradient coil for ultrafast imaging[J]. 1997,81(8): 3853-3855.
  • 8.数学物理方程与特殊函数[M].高教出版社(Higher Education Press),1982..
  • 9Elliot R S. Electromagnetics[M]. New York: McGraw-Hill, 1966.
  • 10Edelstein W A, Schenck F. Current streamline method for coil construction[P]. U. S. Patent;4840700, 1989.

共引文献10

同被引文献10

  • 1赵尚武,王秋良,崔春艳.迈斯纳态下超导球的电磁性质分析[J].低温物理学报,2007,29(1):61-64. 被引量:1
  • 2Maxfield B W, Mclean W L. Phys Rev[J], 1965, 139(5A): 1512.
  • 3London F H. Proc Roy Soc London Ser A[J], 1935, 149(866): 71.
  • 4Halbritter J. Z Physik[J], 1974, 266(3): 209.
  • 5Rose C, Gans M J. IEEE Trans Microwave Theory Tech[J], 1990, 38(2): 166.
  • 6DeSorbo W. Phys Rev[J], 1963, 163(1): 107.
  • 7Van Der Klein C A M, Elen J D, Wolf R et al. Physica[J], 1970, 49(1): 98.
  • 8Harding J T. Adv Cryo Eng[J], 1964, 10:137.
  • 9Schoch K F, Darrel B. Adv Cryo Eng[J], 1966, 12:657.
  • 10He C, Wang Q L. Cryogenics[J], 2007, 47(7-8): 413.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部