期刊文献+

面向混合属性的高效聚类算法研究

Research on Efficient Clustering Algorithm for Mixed Attributes
下载PDF
导出
摘要 将夹角余弦的概念推广到混合属性的数据,提出了一种基于相似度的聚类方法CABMS,同时给出了一种计算聚类阈值的简单有效的策略。有关CABMS数据库的大小,属性个数具有近似线性时间复杂度,使得聚类方法CABMS具有好的扩展性。实验结果表明,CABMS可产生高质量的聚类结果。 The cosine is generalized to data with mixed attributes and a clustering algorithm based on the rule of maximum similarity, named CABMS, is presented in this paper. At the same time, a simple and effective strategy to calculate cluster threshold is put forward. The clustering algorithm CABMS has the nearly linear time complexity with the size of dataset and the number of attributes, which results in good scalability. The experimental results show that the CABMS creates high quality cluster.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第12期47-49,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60273075)
关键词 相似度 聚类 数据挖掘 Similarity Clustering Data mining
  • 相关文献

参考文献6

  • 1Guha S,Rastogi R,Shim K.ROCK:A Robust Clustering Algorithm for Categorical Attributes[C].Proceedings of the 15th International Conference Data Engineering,Sydney,Australia,1999:512-521.
  • 2何增有,徐晓飞,邓胜春.Squeezer:An Efficient Algorithm for Clustering Categorical Data[J].Journal of Computer Science & Technology,2002,17(5):611-624. 被引量:32
  • 3Guha S,Meyerson A,Mishra N,et al.Clustering Data streams:Theory and Practice[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(3):515-528.
  • 4Portnoy L,Eskin L,Stolfo S.Intrusion Detection with Unlabeled Data Using Clustering[C].Proceedings of ACM CSS Workshop on Data Mining Applied to Security,Philadelphia,PA,2001.
  • 5Huang Zhexue.A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining[C].Proc.of SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery,1997.
  • 6Merz C J,Merphy P.UCI Repository of Machine Learning Databases[EB/OL].http://www.ics.uci.edu/ mlearn/ MLRRepository.Html,1999.

二级参考文献17

  • 1Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. ROCK: A robust clustering algorithm for categorical attributes. In Proc. 1999 Int. Conf. Data Engineering, Sydney, Australia, Mar., 1999, pp.512-521.
  • 2Alexandros Nanopoulos, Yannis Theodoridis, Yannis Manolopoulos. C2P: Clustering based on closest pairs. In Proc. 27th Int. Conf. Very Large Database, Rome, Italy, September, 2001, pp.331-340.
  • 3Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases.In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD'96), Portland, Oregon, USA, Aug., 1996,pp.226-231.
  • 4Zhang T, Ramakrishnan R, Livny M. BIRTH: An efficient data clustering method for very large databases. In Proc.the ACM-SIGMOD Int. Conf. Management of Data, Montreal, Quebec, Canada, June, 1996, pp.103-114.
  • 5Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. CURE: A clustering algorithm for large databases. In Proc. the ACM SIGMOD Int. Conf. Management of Data, Seattle, Washington, USA, June, 1998, pp.73-84.
  • 6Karypis G, Han E-H, Kumar V. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 1999, 32(8): 68-75.
  • 7Sheikholeslami G, chatterjee S, Zhang A. WaveCluster: A multi-resolution clustering approach for very large spatial databases. In Proc. 1998 Int. Conf. Very Large Databases, New York, August, 1998, pp.428-439.
  • 8Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. the 1998 ACM SIGMOD Int. Conf. Management of Data, Seattle, Washington,USA, June, 1998, pp.94-105.
  • 9Jiang M FI Tseng S S, Su C M. Two-phase clustering process for outliers detection. Pattern Recognition Letters,2001, 22(6/7): 691-700.
  • 10Venkatesh Ganti, Johannes Gehrke, Raghu Ramakrishnan. CACTUS-clustering categorical data using summaries.In Proc. 1999 Int. Conf. Knowledge Discovery and Data Mining, August, 1999, pp.73-83.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部