期刊文献+

两类非线性差分方程的全局渐近稳定性(英文)

Global Asymptotic Stability of Two Families of Nonlinear Difference Equations
下载PDF
导出
摘要 利用泛函分析方法证明差分方程xn+1=∑i∈Zk-{j,s,t}^xn-i+xn-t^r+xn-jxn-s^m+A/∑i∈Zk-{j,s,t}^xn-i+xn-s^m+xn-jxn-t^r+A,n=0,1,…,其中k∈{2,3,…},j,s,t∈Zk≡{0,1,…,k}(s≠t,j¢{s,t}),A,r,m∈[0,+∞]且初始条件x-k,x-k+1,…,x0∈(0,+∞),和差分方程xn+1=∑i∈Zk-{j0,j1,…,js}^xn-i+xn-j0+xn-j1…xn-js+1/∑i∈Zk-{j0,j1,…js-1}^xn-i+xn-j0xn-j1…xn-js-1,n=0,1,…,其中k∈{1,2,3,…},1≤s≤k,{j0,…,js}包函Zk(ji≠jl对i≠l)且初始条件x-k,x-k+1,…,x0∈(0,+∞)的唯一平衡点^-x=1是全局渐近稳定的, 该结果推广了文献[3~5,7]中相应的结果. Two families of difference equations are discussed. They are the form xn+1=∑i∈Zk-{j,s,t}^xn-i+xn-t^r+xn-jxn-s^m+A/∑i∈Zk-{j,s,t}^xn-i+xn-s^m+xn-jxn-t^r+A,n=0,1,… where k∈{2,3,…},j,s,t∈Zk≡{0,1,…,k} with s≠t and j¢{s,t},A,r,m∈[0,+∞] and the initial values x-k,x-k+1,…,x0∈(0,+∞) ,and the form xn+1=∑i∈Zk-{j0,j1,…,js}^xn-i+xn-j0+xn-j1…xn-js+1/∑i∈Zk-{j0,j1,…js-1}^xn-i+xn-j0xn-j1…xn-js-1,n=0,1,… wherek k∈{1,2,3,…},1≤s≤k,{j0,…,js}belong to Zk with ji≠jl for i≠l and the initial values x-k,x-k+1,…,x0∈(0,+∞)For these difference equations,it is proved that the unique equilibrium ^-x : 1 is globally asymptotically stable,which includes the corresponding results of the references [3-5,7].
出处 《广西科学》 CAS 2006年第2期93-95,共3页 Guangxi Sciences
基金 SupportedbyNSFofChina(10361001,10461001)andNSFofGuangxi(0447004)
关键词 差分方程 平衡点 全局渐近稳定性 difference equation ,equilibrium, global asymptotic stability
  • 相关文献

参考文献10

  • 1EI-OWAIDY H M,AHMED A M,MOUSA M S.On the recursive sequences xn+1=(-αxn-1)/(β±xn)[J].Appl Math Comput,2003,145(2-3):747-753.
  • 2CINAR C.On the positive solutions of the difference equation xn+1=(axn-1)/(1+bxnxn-1)[J].Appl Math Comput,2004,156(2):587-590.
  • 3LADAS G.Open problems and conjectures[J].J Differ Equa Appl,1998,4(1):497-499.
  • 4NESEMANN T.Positive nonlinear difference equations:Some results and applications[J].Nonlinear Anal,2001,47(7):4707-4717.
  • 5LI X,ZHU D.Global asymptotic stability of a nonlinear recursive sequence[J].Appl Math Lett,2004,17(7):833-838.
  • 6AMLEH A M,KRUSE N,LADAS G.On a class of difference equations with strong negative feedback[J].J Differ Equa Appl,1999,5(4):497-515.
  • 7PAPASCHINOPOULOS G,SCHINAS C J.Global asymptotic stability and oscillation of a family of difference equations[J].J Math Anal Appl,2004,294(2):614-620.
  • 8THOMPSON A C.On certain contraction mappings in a partially ordered vector space[J].Proc Amer Math Soc,1963,14:438-443.
  • 9KRAUSE U,NUSSBAUM R D.A limit set trichotomy for self-mappings of normal cones in Banach spaces[J].Nonlinear Anal,1993,20(7):855-870.
  • 10KRUSE N,NESEMANN T.Global asymptotic stability in some discrete dynamical systems[J].J Math Anal Appl,1999,235(1):151-158.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部