摘要
利用泛函分析方法证明差分方程xn+1=∑i∈Zk-{j,s,t}^xn-i+xn-t^r+xn-jxn-s^m+A/∑i∈Zk-{j,s,t}^xn-i+xn-s^m+xn-jxn-t^r+A,n=0,1,…,其中k∈{2,3,…},j,s,t∈Zk≡{0,1,…,k}(s≠t,j¢{s,t}),A,r,m∈[0,+∞]且初始条件x-k,x-k+1,…,x0∈(0,+∞),和差分方程xn+1=∑i∈Zk-{j0,j1,…,js}^xn-i+xn-j0+xn-j1…xn-js+1/∑i∈Zk-{j0,j1,…js-1}^xn-i+xn-j0xn-j1…xn-js-1,n=0,1,…,其中k∈{1,2,3,…},1≤s≤k,{j0,…,js}包函Zk(ji≠jl对i≠l)且初始条件x-k,x-k+1,…,x0∈(0,+∞)的唯一平衡点^-x=1是全局渐近稳定的, 该结果推广了文献[3~5,7]中相应的结果.
Two families of difference equations are discussed. They are the form xn+1=∑i∈Zk-{j,s,t}^xn-i+xn-t^r+xn-jxn-s^m+A/∑i∈Zk-{j,s,t}^xn-i+xn-s^m+xn-jxn-t^r+A,n=0,1,… where k∈{2,3,…},j,s,t∈Zk≡{0,1,…,k} with s≠t and j¢{s,t},A,r,m∈[0,+∞] and the initial values x-k,x-k+1,…,x0∈(0,+∞) ,and the form xn+1=∑i∈Zk-{j0,j1,…,js}^xn-i+xn-j0+xn-j1…xn-js+1/∑i∈Zk-{j0,j1,…js-1}^xn-i+xn-j0xn-j1…xn-js-1,n=0,1,… wherek k∈{1,2,3,…},1≤s≤k,{j0,…,js}belong to Zk with ji≠jl for i≠l and the initial values x-k,x-k+1,…,x0∈(0,+∞)For these difference equations,it is proved that the unique equilibrium ^-x : 1 is globally asymptotically stable,which includes the corresponding results of the references [3-5,7].
出处
《广西科学》
CAS
2006年第2期93-95,共3页
Guangxi Sciences
基金
SupportedbyNSFofChina(10361001,10461001)andNSFofGuangxi(0447004)
关键词
差分方程
平衡点
全局渐近稳定性
difference equation ,equilibrium, global asymptotic stability