摘要
通过引入一个辅助优化问题,将广义投影与罚函数技巧和F isher函数(a,b)=a2+b2-(a+b),a,b∈En的特殊性质:a2+b2-(a+b)=0 a≥0,b≥0,ab=0结合起来,给出处理非线性等式、不等式约束问题的广义梯度投影算法,并证明该算法是全局收敛的.该算法不仅保持文献[6]的优点,而且还扩大了初始点的选择范围.
In this paper,we give a generalized gradient projection algorithm for solving equality and inequality constrained optimization problem by introducing an assistant optimization problem and combining the following three facets : 1 ) generalized projection, 2) the shill of penalty function, 3) Fisher function φ(a,b)=√a^2+b^2-(a+b), which has its special property: √a^2+b^2(a+6)=0←→a≥0,b≥0,ab=0. Furthermore,we prove that this algorithm is globally convergent. This algorithm preserves not only the advantage of reference [6],but also extends the choice range of initial point.
出处
《广西科学》
CAS
2006年第2期102-104,共3页
Guangxi Sciences
基金
国家自然科学基金(10161002)
广西自然科学基金(30542043)资助
关键词
约束优化
梯度投影
罚函数
Fisher函数
全局收敛性
constrained optimization, gradient projection, penalty function, Fisher function, global convergence