期刊文献+

具有点反馈弯矩的Euler-Bernoulli梁的稳定性

Stabilization of Euler-Bernoulli Beam with a PointwiseFeedback Bending Moment
下载PDF
导出
摘要 该文研究具有点反馈弯矩Euler-Bernoulli梁的稳定性。用线性算子半群方法证明了闭环系统的适定性,并应用算子谱特征得到了闭环系统的强渐近稳定性的充分必要条件。同时,给出了保守系统的几个能观性不等式。 This paper studies the stability of Euler- Bemoulli beam with a pointwise feedback bending moment . The authors prove well posedness of the closed loop system by the method of linear operators semigroup and show that strongly asymptotical stability of closed loop system by spectnan characteristics of the operator. Also the authors give some observability inequalities to conservative system.
作者 章春国
出处 《杭州电子科技大学学报(自然科学版)》 2006年第2期85-88,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省教育厅科研基金资助项目(20050481)
关键词 点反馈 弯矩 无阻尼问题 强渐近稳定性 pointwise feedback bending moment undamped problem strongly asymptotieal stability
  • 相关文献

参考文献9

  • 1K Ammari,M Tucsnak.Stabilization of Bernoulli-Euler Beams by Means of a Pointwise Feedback Force[J].SIAM J Cont Optim,2000,(39):1160-1181.
  • 2K Ammari,Z Y Liu,M Tucsnak.Decay rates for a beam with pointwise force and moment feedback.Math Control Signals Systems[J].2002,(15):229-255.
  • 3章春国,赵宏亮.具有内部点耗散的Timoshenko梁的能量衰减估计[J].系统科学与数学,2006,26(1):83-94. 被引量:3
  • 4R Rebarber.Exponential stability of a coupled beams with dissipative joints:A Frequencydomain approach[J].SIAM J Cont Optim,1995,(33):1-28.
  • 5Admas R A.Sobolev Space[M].New York:Academic Press,1975.
  • 6Pazy A.Semigroups of Linear Operators and Applications to Partial Differential Equations[M].New York:Springer,1983.
  • 7M Tucsnak.Regularity and exact controllability for a beam with piezoelectric actuator[J].SIAM J Control Optim,1996,(34):922-930.
  • 8F L Huang.Strong asymptotic stability of linear dynamical systems in Banach spaces[J].J Differential Equations,1993,(104):307-324.
  • 9J M Ball,M Slemrod.Nonharmonic Fourier series and the stabilization of semilinear control systems[J].Comm.Pure Appl Math,1979,(32):555-587.

二级参考文献9

  • 1Liu K S, Liu Z Y and Rao Bopeng. Exponential stability of an abstract non-dissipative linear svstem. SIAM J. Cont. Optim., 2001, 40(1): 1149-165.
  • 2章春国 赵宏亮.Timoshenko梁点反馈的稳定性[Z].,..
  • 3Admas R A. Sobolev Space. Academic Press, 1975.
  • 4Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer,New York, 1983.
  • 5Lions J L and Magenes E. Probléms aux limits non homogenes et applications. Dunod, Paris,1968.
  • 6Russell D L. Decay rates for weakly damped systems in Hilbert space obtained with control theoretic methods. Differential Equations, 1975, 19: 344-370.
  • 7Ammaxi K, Tucsnak M. Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J. Cont. Optim., 2000, 39(4): 1160-1181.
  • 8冯德兴,史东华,张维弢.Timoshenko梁的耗散边界反馈控制[J].中国科学(A辑),1997,27(12):1075-1082. 被引量:4
  • 9章春国,赵宏亮,刘康生.具有局部分布反馈与边界反馈耦合控制的非均质Timoshenko梁的指数镇定[J].数学年刊(A辑),2003,24(6):757-764. 被引量:4

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部