期刊文献+

基于数据挖掘的入侵检测研究

Study on Data Mining Based Intrusion Detection for Network
下载PDF
导出
摘要 网络入侵检测系统已经成为网络安全架构的一部分。但是当前的NIDS(network intrusion detection system)在未知攻击的检测上都存在虚警率过高的问题。首先对在线和离线系统的优缺点做了对比,重点介绍了分类器的集成学习和多检测器关联以及数据挖掘方法中的一些实用技术,然后介绍现存的系统和评价数据集,最后总结了入侵检测领域的工作并给出了这个领域的发展方向。 Network intrusion detection systems have become a part of security infrastructures. Unfortunately, high false alarm rate exists in current systems at detection unknown attacks. Firstly, the advantages and disadvantages between online system and offline system were compared, an integrated learning method of classifier and multi-sensor relation and some applicable techniques about data mining method were discussed in detail. Then many current intrusion detection system and evaluation datasets were introduced. Finally, the work in intrusion detection area was summarized ; the developing trend was given.
出处 《自动化仪表》 CAS 2006年第6期14-17,21,共5页 Process Automation Instrumentation
关键词 入侵检测 数据挖掘 机器学习 统计学习 Intrusion detection Data mining Machine learning Statistical learning
  • 相关文献

参考文献12

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2Bass,T.Intrusion detection systems and multisensor data fusion.Communications of the the ACM 2000,43(4):99-105.
  • 3Lee W.and D.Xiang.Information-theoretic measures for anomaly detection[C]//Proc.of the 2001 IEEE Symp.on Security and Privacy.Oakland:IEEE Computer Society Press,2000:130-143.
  • 4Dickerson,J.E.and J.A.Dickerson.Fuzzy network profiling for intrusion detection[C].// Proc.of NAFIPS 19th International Conference of the North American Fuzzy Information Processing Society (NAFIPS),Atlanta,2000:301-306.
  • 5Lee W.and S.J.Stlfo.A framework for constructing features and models for intrusion detection systems[J].Information and System Security,2000,3(4):227-261.
  • 6Lee W.,S.J.Stolfo.Real time data mining-based intrusion detection[C]//Proc.Second DARPA Information Survivability Conference and Exposition,Anaheim,CA:IEEE Computer Society,2001:85-100.
  • 7Helmer G.,J.Wong,V.Honavar,and L.Miller.Automated discovery of concise predictive rules for intrusion detection.Iowa State Univ.,Ames,IA.1999:99.
  • 8Lane T.D.Machine Learning Techniques for the computer security domain of anomaly detection[D].West Lafayetta:Purdue Univ:2000.
  • 9Lee W.and S.J.Stolfo.Data mining approaches for intrusion detection[C]//Proc.of the 7th USENIX Security Symp.,San Antonio,TX.USENIX.1998.
  • 10Kumar S.Classification and Detection of Computer Intrusions[D].West Lafayette:Purdue Univ.,1995.

二级参考文献46

  • 1LEE W,STOLFO S,MOK K. A data mining framework for adaptive intrusion detection[EB/OL]. http://www.cs.columbia.edu/~sal/ hpapers/framework.ps.gz.
  • 2LEE W, STOLFO S J, MOK K. Algorithms for mining system audit data[EB/OL]. http://citeseer.ist.psu.edu/lee99algorithms.html. 1999.
  • 3KRUEGEL C, TOTH T, KIRDA E.Service specific anomaly detection for network intrusion detection[A]. Proceedings of the 2002 ACM Symposium on Applied Computing[C]. Madrid, Spain, 2002. 201-208.
  • 4LIAO Y, VEMURI V R. Use of text categorization techniques for intrusion detection[A]. 11th USENIX Security Symposium[C]. San Francisco, CA, 2002.
  • 5An extensible stateful intrusion detection system[EB/OL]. http://www.cs.ucsb.edu/~kemm/NetSTAT/doc/index.html.
  • 6ILGUN K. USTAT: A Real-Time Intrusion Detection System for UNIX[D]. Computer Science Dep University of California Santa Barbara, 1992.
  • 7The open source network intrusion detection system [EB/OL]. http://www.snort.org/.
  • 8KO C, FINK G, LEVITT K. Automated detection of vulnerabilities in privileged programs by execution monitoring[A]. Proceedings of the 10th Annual Computer Security Applications Conference [C]. Orlando, FL: IEEE Computer Society Press, 1994. 134-144.
  • 9Computer security & other applications of immunology[EB/OL]. http://www.cs.unm.edu/~forrest/isa_papers.htm.
  • 10GRUNDSCHOBER S. Sniffer Detector Report[R]. IBM Research Division Zurich Research Laboratory Global Security Analysis Lab, 1998.

共引文献233

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部