期刊文献+

一种求解网络最大流问题的算法 被引量:8

An Algorithm for the Solution to the Maximum-flow Problem of Networks
下载PDF
导出
摘要 随着网络应用的不断深入,人们对网络传输容量和服务质量的要求和期望也越来越高,设计高性能网络成为一项迫切的工作。缓存的配置直接影响网络的时延和丢失率,网络缓存和网络传输容量的合理匹配,能很好提高网络性能。文章简述了网络最大流问题的现状,提出了一种求解网络最大流问题的算法。算法基于MPLS流量工程技术,在实现网络最大流的情况下,同时对M条分支(链路)重新分配流量,达到合理分配网络流量和利用网络资源的目的。仿真结果表明算法是有效的。 With expansion of Internet application, people's expectation and requirement on network transmission capacity and service quality become higher and higher. Therefore, it is imperative to design the network with strong perform ance. Configuration of buffer memory directly influences the delay and loss rate of network. Good match between buffer memory of network and network capacity will improve performance of network. The condition of the maxlmum-flow problem is proposed simply in this article, and presents a algorithm for the solution to the maximum-flow problem of networks. The algorithm solutes the maximum-flow problem of networks based on MPLS traffic engineering technology,and distributes flow again to balance load and use network resources reasonable. The simulation results show the given algorithm is effective.
出处 《计算机科学》 CSCD 北大核心 2006年第6期39-41,共3页 Computer Science
基金 国家自然科学基金(10371097) 云南省计算机应用技术重点实验室开放基金资助项目。
关键词 最大流问题 多协议标签交换(MPLS) 流量工程 算法 Maximum flow problem, Multi-protocol Label Switching(MPLS),Traffic engineering,Algorithm
  • 相关文献

参考文献9

  • 1Goldberg A V, Rao S. Beyond the flow decomposition barrier[J]. J Assoc Compute Math,1998,45(5) :783-797
  • 2张宪超,陈国良,万颖瑜.网络最大流问题研究进展[J].计算机研究与发展,2003,40(9):1281-1292. 被引量:52
  • 3Xiao X P. Traffic engineering with MPLS in the Internet [J].IEEE Networking, 2000,14 (2):28- 33
  • 4Girish M K,Zhou B, Hu J Q. Formulation of the traffic engineering problems in MPLS based IP networks [AJ. The Fifth IEEE-ISCC [C]. Antibes,France,2000. 214-219
  • 5Ahuja R K, Magnanti T L, Orlin J R Network Flows: Theory,Algorithms and Applications [M]. New Jersey:Prentice Hall,2000. 134-151
  • 6Wang Y F,Wang Z. Explicit routing algorithms for Internet traffic engineering [A]. IEEE ICCCN'99 [C]. Boston, MA, 1999.582-588
  • 7Awduche D. RSVP-TE: extensions to RSVP for LSP tunnels.IETF, Internet Draft. http://www.ietf.org, 2001
  • 8Waxman B M. Routing of multipoint connections [J]. IEEE Journal on Selected Areas in Communications, 1988,6(9):1617-1622
  • 9Lee Y,Seok Y,Cehol Y. A constrained multipath traffic engineering scheme for MPLS networks [A]. ICC'02 [C]. New York,2002. 2431-2436

二级参考文献126

  • 1R K Ahuja, J B Orlin. A fast and simple algorithm for the maximum flow problem. Oper Res, 1989, 37(5) : 748~759.
  • 2R K Ahuja, J B Orlin, R E Tarjan. Improved time bounds for the maximum flow problem. SIAM J Computing, 1989, 18(5): 939-954.
  • 3N Alon. Generating pseudo-random permutations and maximum flow algorithms. Information Processing Letters, 1990, 35 ( 4 ) :201-203.
  • 4V King, S Rao, R Tarjan. A faster deterministic maximum flow algorithm. J Algorithms, 1994, 17(3): 447~474.
  • 5J Cheriyan, T Hagerup, K Mehlhom. An O( n^3)-time maximum flow algorithm. SIAMJ Computing, 1996, 25(6): 1144~1170.
  • 6H N Gabow. Scaling algorithms for network problems. J Comput System Sci, 1985, 31(2): 148-168.
  • 7R K Ahuja, J B Orlin. Distance-directed augmenting path algorithms for the maximum flow problem. Naval Research Logisties Quarterlv. 1991. 38(2): 413~430.
  • 8V M Malhotra, M P Kumar, S N Mahesh-wari. An O ( | V^3| )algorithm for finding maximum flows in networks. Information Processing Letters, 1978, 7(6) : 277~278.
  • 9A V Goldberg, R E Tarjan. Finding minimum-cost circulations by successive approximation. Math Oper Res, 1990, 15(3): 430~466.
  • 10D Hochbuam. The pseudoflow algorithm and the pseudoflow-based simplex for the maximum flow problem. In: R E Bixby, E A Boyd, Roger et al eds. Proc of the Integer Programming and Combinatorial Optimization 6th Int' l Conf ( LNCS 1412 ) .Heidelberg: Springer-Verlag, 1998. 325~337.

共引文献51

同被引文献52

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部