期刊文献+

近红外光学带隙硅三维光子晶体的制备 被引量:4

Preparation of the Three-dimensional Silicon Photonic Crystal with a Photonic Band Gap Near Infrared
下载PDF
导出
摘要 用溶剂蒸发法将单分散SiO2微球组装成三维有序结构的胶体晶体模板,用低压化学气相沉积法填充高折射率材料硅,酸洗去除SiO2模板,获得了硅反蛋白石三维光子晶体。通过扫描电镜、X射线衍射仪和紫外-可见-近红外光谱仪对硅反蛋白石三维光子晶体的形貌、成分、结构和光学性能进行了表征。研究结果表明:Si在SiO2微球空隙内具有较高的结晶质量,填充致密均匀;通过控制沉积条件,可控制硅的填充率;制备的硅反蛋白三维光子晶体在近红外区(1.4μm左右)具有明显的光学反射峰,表现出光学带隙效应,测试的光学性能与理论计算基本吻合。 Monodisperse silica microspheres are assembled into three-dimensional colloidal crystal template with long-ranged order by using solvent vaporization method. Low pressure chemical vapour deposition is then used to fill the voids of silica colloidal crystals template with high refractive index material silicon, then silica colloidal crystals template is removed by an acid etching. Thus silicon three-dimensional inverse opal photonic crystal is obtained. The modality, component, structure and optic capability of the resulted samples are characterized by scanning electron microscopy, X-ray diffraction and UV-VIS-NIR spectroscopy. Results show that silicon of high crystalline quality is homogeneously distributed inside the voids of silica template. The infiltration of silicon can be controlled by controlling the conditions of LPCVD. The samples have optic reflective apex near infrared(about 1.4btm)and show the photonic band gap effects. The experiment optic capability is inosculated with the calculated one.
出处 《材料导报》 EI CAS CSCD 北大核心 2006年第6期129-131,共3页 Materials Reports
基金 国家部委基金资助项目
关键词 硅反蛋白石 光子晶体 低压化学气相沉积 溶剂蒸发法 silicon inverse opal, photonic crystal, low pressure chemical vapour deposition, solvent vaporization method
  • 相关文献

参考文献8

  • 1Yablonovitch E.Inhibited spontaneous emission in solidstate physics and electronics[J].Phys Rev Lett,1987,58:2059
  • 2John S S.Localization of photons in certain disordered dielectric superlattices[J].Phys Rev Lett,1987,58:2486
  • 3Xia Younan,Gates,Byron,et al.Monodispersed colloidal spheres:old material with new applications[J].Adv Mater,2000,12(10):693
  • 4Busch K,John S.Photonic band gap formation in certain self-organizing systems[J].Phys Rev E,1998,58:3896
  • 5Jiang P,Bertne J F,et al.Single-crystal colloidal multilayers of controlled thickness[J].Adv Mater,1999,11:2132
  • 6Vlasov Y A,Bo Xiangzheng,Srurm J C,et al.On-chip natural assembly of silicon photonic bandgap crystal[J].Nature,2001,414:289
  • 7Miguez H,et al.Control of the photonic crystal properties of fcc packed submicrometer SiO2 spheres by sintering[J].Adv Mater,1999,10:480
  • 8Blanco A,et al.Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5micrometres[J].Nature,2000,405:437

同被引文献26

  • 1钟永春,朱少安,汪河洲,曾兆华,陈用烈.全息制作不同晶面取向光子晶体模板[J].物理学报,2006,55(2):688-691. 被引量:9
  • 2YABLONOVITCH E. Inhibited spontaneous emission in solidstate physics and electronics[J]. Phys Rev Lett, 1987,58(20): 2059-2061.
  • 3JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett , 1987,58(23) :2486-2488.
  • 4XIA Younan, GATES B, YIN Yadong, et al. Monodispersed colloidal spheres: old material with new applications[J]. Adv Mater,2000,12(10) :693-716.
  • 5BUSCH K, JOHN S. Photonic band gap formation in certain self organizing systems[J]. Phys Rev E, 1998,58 (3) : 3896-3908.
  • 6BLANCO A, CHOMSKI E, GRABTCHAK S, et al. Large scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1. 5 micrometres[J]. Nature, 2000,405(6785) :437-440.
  • 7MIGUEZ H, CHOMSKI E, GARCIA-SANTAMARIA F, et al. Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition[J]. Adv Mater, 2001,13(21): 1634-1637.
  • 8Yablonovitch E 1987 Phys. Rev. Lett. 58 2059.
  • 9John S 1987 Phys. Rev. Lett. 58 2486.
  • 10Krauss T F,De La Rue R M,Brand S.1996 Nat. 383 699.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部