期刊文献+

一类具有时滞的生态模型的Hopf分支 被引量:6

Hopf bifurcation for a class ecological model of delays
下载PDF
导出
摘要 研究了一类具有连续时滞与离散时滞的单种群模型的无条件稳定与Hopf分支问题.首先利用特征值理论得到了模型无条件稳定的充要条件,从而说明时滞为无害时滞,再以时滞τ为参数,给出了Hopf分支的存在性条件及分支值处模型平衡态的稳定性. Absolute stability and Hopf bifurcation for a class ecological model with the distributed and distete delay are investigated. Sufficient conditions of absolute stabiltiy are obtained by using the theory of characteristic value, and it is shown that the delay r is locally harmless. Furthermore, regarding the delay as a parameter, conditions of the existence of Hopf bifurcation and the stability of model at τ0 are given.
作者 贺云 陈斯养
出处 《纺织高校基础科学学报》 CAS 2006年第2期100-104,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10071048) 陕西师范大学重点科研项目
关键词 时滞生态模型 HOPF分支 稳定性 ecological model of delay Hopf bifurcation stability
  • 相关文献

参考文献6

二级参考文献17

  • 1马知恩 周义仓.常微分方程定性与稳定性分析[M].北京:科学出版社,2001..
  • 2[2]J K Hale. Theory of functional differential euqations[M]. New York, Springer-Verlag, 1977.
  • 3[3]Leonard Meirovitch. Methods of analytical dynamics [M]. New York, Louis San Francisco,1970.
  • 4[4]T A Burton and I Hatyan. Sability theorems for non-autonomous differential equations[J]. To hoku. Math. J., 1989,41:65-104.
  • 5[5]K Gopasamy. Global asymptotic stability in periodic integral-differential system[J]. Tohoku.Math. J., 1985,37:323-332.
  • 6[6]A Tineo. On the asymptotic behavior of some population models [J]. J Math. Anal. Appl. ,1992,167:516-529.
  • 7Hassard B D,Kazarinoff N D.Theory and Applications of Hopf Bifurcation[M].London:Cambridg9e University Press,1981.
  • 8WEN Xian-zhang.The existence of periodic solutions for some models with delay[J].Nonlinear Analysis,2002,3(4):567-581.
  • 9LIAO Xiao-feng.Bifurcation analysis on a two-neuron system with distributed delays[J].Physica,2001,149(1-2):123-141.
  • 10LI Xian-gao.Stability and bifurcation in delay-differential equtions with two delays[J].Journal of Mathematical Analysis and Applications,1999,236(2):254-280.

共引文献22

同被引文献46

  • 1黄利航,陈斯养.一类具有时滞的捕食与被捕食模型的Hopf分支[J].西北师范大学学报(自然科学版),2004,40(4):12-18. 被引量:12
  • 2黄建科,陈斯养.一类具时滞的Logistic模型的Hopf分支[J].陕西师范大学学报(自然科学版),2004,32(4):19-22. 被引量:11
  • 3杨颖茶,陈斯养.一类具有时滞的广义Logistic模型的hopf分支[J].云南师范大学学报(自然科学版),2006,26(4):1-6. 被引量:7
  • 4司瑞霞,陈斯养.一类含时滞的广义Logistic模型的Hopf分支[J].西北师范大学学报(自然科学版),2006,42(6):18-22. 被引量:7
  • 5Gopalsamy.k.Stability and oscillations in Delay differential equations of population dynamics[M].Dordrecht:Kluwer Academic publishers,1992.
  • 6Cushing.J.M.Integrodifferential equations with Delay models in population dynamics[M].Berlin:springer Verlag,1997.
  • 7Gopalsamy K. Stability and oscillations in delay differential equations of population dynamics. Dordrecht : Klu-wer Academic Publishers, 1992 : 143-148.
  • 8Cushin G J M. Integrodifferential equations with delay models in population dynamics. Berlin: Springer-Verlag, 1997.
  • 9陈兰荪,孟建柱,焦建军.生物动力学[M].北京:科学出版社,2009.
  • 10左晓红 陈斯养.一类具有连续和离散时滞的干扰模型的定性分析.云南师范大学学报:自然科学版,2003,17(3):11-15.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部