摘要
设f:R×R×R→R的连续函数.在f是伪概周期函数的前提下研究自变数镜射微分方程.x(t)+ax(t)+bx(-t)=f(t,x(t),x(-t)),b≠0,t∈R.伪概周期解的存在惟一性.研究工具是压缩映射原理.
Let f∈C(R×R×R,R). Under pseudo almost periodic function condition on the nonlinearity f ,it is investigated that the existence of pseudo almost periodic solutions for differentional equations with reflection of the argument x(t)+ax(t)+bx(-t)=f(t,x(t),x(-t)),b≠0,t∈R.The analysis is based on the banach contraction mapping theory.
出处
《纺织高校基础科学学报》
CAS
2006年第2期133-135,139,共4页
Basic Sciences Journal of Textile Universities
关键词
伪概周期解
微分方程
自变数镜射
压缩映射原理
pseudo almost periodic solutions
differentional equations
reflection of the argument
Banach contraction mapping theory