期刊文献+

闪速熔炼气流干燥优化控制系统的设计与实现 被引量:2

Design and Implementation of the Optimal Control System for Pneumatic Conveying Drying in Flash Smelting
下载PDF
导出
摘要 针对气流干燥过程水分难以稳定的问题,设计了一个由水分软测量模型和氮气专家控制器组成的双反馈控制系统.通过智能协调得到软测量的输出,结合约束条件,采用遗传算法搜索燃油量的最优值;由氮气专家控制器来调节氮气量,从而改变回转窑窑头含氧率,使精矿不着火.通过这两个反馈调节,使得耗氮量和燃油量同时达到最小.工业数据验证表明,累计平均耗氮量和燃油量分别下降了1.4%和0.3%.* For the problem that moisture in pneumatic conveying drying is difficult to be stabilized, a dual-feedback control system composed of a soft-sensing model for moisture and an expert controller for nitrogen gas is put forward. The output of the soft-sensing model is obtained by an intelligent coordinator. The optimal value of fuel is searched using genetic algorithm based on the constraints, and the oxygen content in front of rotary-kiln is adjusted with the expert controller for nitrogen gas in order to ensure the ore concentrate not to eombust. The least value of fuel and nitrogen gas is obtained simultaneously by the dual-feedback control. The scheme is tested by industrial data, and its average value of the fuel and nitrogen gas is decreased by 1.4% and 0.3% respectively.
出处 《信息与控制》 CSCD 北大核心 2006年第3期397-401,共5页 Information and Control
基金 国家973计划资助项目(2002CB312200)
关键词 气流干燥 双反馈 软测量 专家控制器 pneumatic conveying drying dual-feedback soft-sensing expert controller
  • 相关文献

参考文献6

二级参考文献28

  • 1于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 2陈霁威 黄道.Aspen Plus对甲醇合成流程的模拟研究.2001中国控制与决策学术年会论文集[M].西安:东北大学出版社,2001.991-994.
  • 3[2]GOMM J B, YU D L. Selecting radial basis function network centers with recursive orthogonal least squares training [J]. IEEE Trans on Neural Networks, 2000, 11(2): 306-314.
  • 4[3]RUANO A E, FERREIRA P M, CABRITA C, et al. Training neural networks and neural-fuzzzy systems: a unified view [C]∥Proc of the 15th IFAC. Barcelona: Elsevier Science, 2002.
  • 5[6]KODKINEN J, YLINIEMI L, LEIVISK K. Fuzzy modeling of a rotary dryer [C]∥Preprints of the IFAC Workshop. Finland: Elsevier Science, 2000:166-171.
  • 6[7]WU M, NAKANO M, SHE J H. A model-based expert control strategy using neural networks for the coal blending process in an iron and steel plant [J]. Expert Systems with Applications, 1999, 6(16): 271-281.
  • 7[8]HAGAN M T, DEMOUTH H B, BEALE M H. Neural Network Design [M]. Boston: PWS Publishing Company, 1996.
  • 8[9]HAGAN M T, MENHAJ M. Training feed forward network with the Marquardt algorithm [J]. IEEE Trans on Neural Networks, 1994, 5(6): 989-993.
  • 9Riedmiller M, Braun H. A direct adaptive method for faster backpropagation learning: the RPROP algorithm [ A]. Proceedings of the IEEE International Conference on Neural Networks [ C ]. New York:IEEE Press, 1993. 586 -591.
  • 10Chen S, Billings S A. Neural networks for nonlinear dynamic system modeling and identification [J]. International Journal of Control, 1992, 56(2) : 359 -366.

共引文献60

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部