摘要
运用定积分中的元素法,给出了空间曲线绕空间直线旋转一周所成的旋转曲面与垂直于旋转轴的两个平面所围成的旋转体体积的计算公式:V=π(m2+n2+p2)23∫tt12{[p(y(t)-b)-n(z(t)-c)]2+[m(z(t)-c)-p(x(t)-a)]2+[n(x(t)-a)-m(y(t)-b)]2}m.x′(t)+n.y′(t)+p.z′(t)dt从而将平面图形的旋转体体积推广到了空间情形.
Using of the element method of the definite integral, this paper gives the calculation formula of the volume of the hotly of rotation that encircled hy the surface of revolution which formed by the space curve rotates the space right line a circle and the two planes which perpendicular the rotation axis:V=π/(m^2+n^2+p^2)3/2∫^t2 t1{[p(y(t)-b)-n(z(t)-c)]^2+[m(z(t)-c)-p(x(t)-a)]^2 +[n(x(t)-a)-m(y(t)-b)]2}|m·x′(t)+n·y'(t)+p·z'(t)|dt So we extend tile volume of the hody of rotatoin of the plane figure to that of the space situation.
出处
《数学的实践与认识》
CSCD
北大核心
2006年第5期304-307,共4页
Mathematics in Practice and Theory
关键词
旋转体
体积
曲线
旋转轴
平面
body of rotation
volume
curve
axis of rotation
plane