期刊文献+

聚噻吩(PT)、聚-3-甲基-噻吩(PMT)和聚-3,4-亚乙二氧基-噻吩(PEDT)作为超电容器电极材料的研究

Study of polythiophene,poly-3-methyl-thiophene and poly(3,4-ethylendioxythiophene) as supercapacitor electrode materials
下载PDF
导出
摘要 通过线性扫描伏安法分别测试了电解质0.2M E t4NBF4的碳酸丙稀酯溶液在铂电极和玻璃碳电极上的电化学稳定窗口,结果表明,该电解质在玻璃碳电极上更稳定。通过电化学聚合在玻璃碳电极上分别合成了聚噻吩、聚-3-甲基-噻吩和聚-3,4-亚乙二氧基-噻吩,并通过循环伏安对三种导电高分子的掺杂特性进行了表征,分析比较三种导电高分子在电化学掺杂/去掺杂过程中的掺杂电位、可传递电荷、掺杂度和电荷捕获度可知,对于其掺杂电位,PT>PMT>PEDT;而对于去掺杂电荷和掺杂度,PEDT>PMT>PT,这表明PEDT是更有应用前景的超电容器电极材料。 The electrochemical stability window of the electrolyte, 0. 2M Et4NBF4 in propylene carbonate (PC), is examined on platinum and glassy carbon, respectively, by linear scanning voltammetry (LSV). The result indicates that the electrolyte is more stable on glassy carbon than on platinum upon electrochemical redox reactions. Three conducting polymers, polythiophene (PT), poly-3-methyl-thiophene (PMT) and poly(3,4-ethylenedioxythiophene) (PEDT) are synthesized by electro-polymerization of the corresponding monomers on glassy carbon electrodes. The p-doping/dedoping processes of PT, PMT and PEDT are characterized in PC containing 0.2M Et4NBF4 by cyclic voltammetry (CV). The deliverable charge, doping level and charge-trapping degree of PT, PMT and PEDT obtained from CVs were compared to one another. The results demonstrate that p-doping of the three polymers are at potential values on the order of PT〉PMT〉PEDT, but the de-doping charge and the doping level of them are on the order of PEDT〉PMT〉PT. It suggests that PEDT is a potential electrode' material for supercapacitor application.
出处 《渤海大学学报(自然科学版)》 CAS 2006年第2期101-105,共5页 Journal of Bohai University:Natural Science Edition
基金 辽宁省自然科学基金资助项目(20042169)
关键词 聚噻吩 聚-3-甲基-噻吩 聚-3 4-亚乙二氧基-噻吩 掺杂 超电客器 polythiophene poly-3-methyl-thiophene poly (3,4-ethylendioxythiophene) doping supercapacitors
  • 相关文献

参考文献9

  • 1[1]A.G.MacDiarmid,L.S.Yang,W.S.Huang and B.D.Humphrey[J].Synth.Met.,1987(18):393.
  • 2[2]B.Sankaran and J.R.Reynolds,High-contrast electrochromic polymers from alky-derivatized poly (3,4-ethylenedioxyt hiophenes)[J].Macromolecules,1997 (30):2582.
  • 3[3]M.Mastragostino,C.Arbizzani,R.Paraventi and A.Zanelli,Polymerselection and cell design for electric-vehicle supercapacitors[J].J.Electrochem.Soc.,2000(147):407.
  • 4[4]J.W.Thackeray,H.S.White and M.S.Wrighton,Poly (3-methylthiophene)-coated electrodes,Optical and electrical properties as a function of redox potential and amplification of electrical and chemical signals using poly (3-methylthiophene)-based microelectrochemical transistors[J].J.Phys.Chem.,1985(89):5133.
  • 5[5]J.P.Zheng,J.Huang and T.R.Jow,The limitations of energy density for electrochemical capacitors[J].J.Electrochem.Soc.,1997(144):2026.
  • 6[6]J.Roncali,Conjugated poly9thiophenes):Synthesis,functionalization,and applications[J].Chem.Rev.,1992(92):711.
  • 7[7]J.Roncali,Synthetic principles for bandgap control in linear π-conctionalization,and applications[J].Chem.Rev.,1997(97):173.
  • 8[8]M.Mastragostino,R.Paraventi and A.Zanelli,Supercapacitors based on composite polymer electrodes[J].J.Electrochem.Soc.,2000(147):3167.
  • 9[9]A.Rudge,I.Raistrick,S.Gottesfeld and J.P.Ferraris,A study of the electrochemical properties of conducting polymers for appilcation in electrochemical capacitors[J].Electrochim.Acta,1994 (39):273.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部