期刊文献+

正则多部竞赛图中的分量共轭圈

Componentwise Complementary Cycles in Diregular Multipartite Tournaments
下载PDF
导出
摘要 竞赛图的共轭圈问题已经完全解决,而关于多部有向图的共轭圈问题仍然是一个open问题。Yeo于1999年提出正则多部竞赛图包含共轭圈的猜想。论文根据分量共轭圈(componentwisecomplementarycycles)的定义,证明了:如果D是一个正则的n-部竞赛图(n≥4),则D包含一对分量共轭圈C1和C2,除非它同构于T71。这对于解决Yeo的猜想和多部有向图的共轭圈问题有一定的意义。 The problem of complementary cycles in tournaments has been completely solved.However,for semicomplete multi-partite digraphs,the problem of complementary cycles is still open.In 1999,Yeo presented conjecture which a diregular multipartite tournament has a pair of complementary cycles.In this paper,based on the definition of componentwise complementary cycles,we have gotten the following result.lf D is a diregular n-partite(n≥4) tournament,then it contains a pair of componentwise complementary cycles C1 and C2,unless it is isomorphic to T7^1 .This result gives impetus to resolving Yeo's conjecture and the problem of complementary cycles in multipartite digraph.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第17期7-8,共2页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60373025)
关键词 分量共轭圈 正则的 多部竞赛图 componentwise complementary cycles,diregular,multipartite tournament
  • 相关文献

参考文献5

  • 1J A Bondy,U S R Murty.Graph theory with applications[M].MacMillan:New York,1976.
  • 2K B Reid.Two complementary circuits in two-connected tournaments[J].Ann Discrete Math,1985 ;27:321~334.
  • 3Z M Song.Complementary cycles of all lengths in tournaments[J].J Combin Theory Ser B,1993;57(1):18~25.
  • 4A Yeo.Diregular c-partite turnaments are vertex-pancyclic when c≥5[J].J Graph Theory,1999;32:137~152.
  • 5Y Guo,L Volkmann.Cycles in multipartite tournaments[J].J Combin.Theory Ser B,1994; 62:363~366.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部