摘要
针对拟南芥根部基因表达数据分析的问题,本文提出了一种新的基于距离度量学习的支持向机多分类算法.鉴于此问题的特殊性,本文通过最小化4分类机的LOO 误差来求得一个恰当的距离度量.并在此度量下找到若干个属于第5类(其它类)的训练点,从而构造出一个5分类机用来对所有基因分类.实验验证了此算法的可行性,并且比基因表达分析中传统使用的聚类方法更有效.
For the problem of Arabidopsis root gene expression analysis, this paper presents a new algorithm of multi-class Support Vector Machines (SVMs) , which is based on learned distance measure. Because of speciality of this problem, a distance measure is learned by minimizing Leave-one-out (LOO) error of 4-class SVMs, and some genes belong to other classes are determined, then 5-class SVMs is constructed to classify the total genes. Experiments prove the effective of our method compared with traditional clustering methods.
出处
《运筹学学报》
CSCD
北大核心
2006年第2期51-58,共8页
Operations Research Transactions
基金
This work is supported by the National Natural Science Foundation of China(No.10371131).
关键词
运筹学
支持向量机
距离度量学习
拟南芥
基因表达谱
Operation research, SVMs, learning distance metric, arabidopsis, gene Expression