期刊文献+

微分包含端点周期解及松弛定理

ON THE EXISTENCE OF EXTREMAL PERIODIC SOLUTION AND RELAXATION THEOREM FOR DIFFERENTIAL INCLUSION
下载PDF
导出
摘要 利用单边Lipschitz条件给出了微分包含x.(t)∈extF(t,x(t))的周期解的存在性定理,并且证明了x.(t)∈extF(t,,x(t))的解集在x.(t)∈F(t,x(t))的解集中稠. In this paper we study the existence of periodic solution for differential inclusion x' (t) ∈ ext F( t,x (t)).Also it is showed that the solution set of x'(t) ∈ ext F( t,x(t) ) is dense in the solution set of x' (t) ∈ F( t,x(t)).
出处 《哈尔滨师范大学自然科学学报》 CAS 2006年第3期8-10,13,共4页 Natural Science Journal of Harbin Normal University
基金 国家自然科学基金资助项目(10471032) 省教育厅科研资助项目(11511136)
关键词 端点周期解 单边LIPSCHITZ条件 松弛定理 Extremal periodic solution One -side Lipschitz condition, Relaxation theorem
  • 相关文献

参考文献7

  • 1J.P. Aubin, A. Cellina. Differential Inclusion. Berlin:Springer- Verlag, 1984.
  • 2Li Guocheng and Xue Xiaoping. On the existence of periodic solutions for differential inclusions. J. Math. Anal. Appl. 2002,276:168- 183.
  • 3A. Tolstonogov. Continuous selectors of multivalued maps with closed, nonconvex, decomposable values. Russian Acad. Sci.Sb. Math. , 1996,185:121 - 142.
  • 4T. Donchev, E, Farkhi, Stability and Eular approximation of one - side Lipschitz differential inclusion, SIAM J. Control. Optm. ,1998,36(2) : 780-796.
  • 5T. Donehev. Qualitative properties of a class differential inclusions. Glaanik Mathematicki, 1996,31 (51 ) : 269 -276.
  • 6S. Hu, N.S. Papageorgious. Handbook of Multivalued Analysis.Volume I: Theory, Kluwer Dordrecht, The Netherlands, 1997.
  • 7A. Bressan, G. Colombo. Extensions and Selections of Maps with Decomposable Values. Srudia Math. , 1988,90:69 -86.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部