期刊文献+

基于功能模块组织癌细胞系基因表达谱的关联规则 被引量:1

Functional modules based organization for association rules of gene expression profiles in cancer cell lines
下载PDF
导出
摘要 目的提出一种在功能模块化水平上组织大量基因表达谱关联规则的新方法。方法以高频出现在关联规则后件中的基因为基础分类关联规则,再选择显著聚集前件基因的GO基因功能类作为功能模块关联规则的前件,获得功能模块表达关联规则。结果根据NC I60数据,发现了一些与癌症相关的基因及相应的基因功能模块表达关联规则。结论利用功能模块表达关联规则可以有效地挖掘疾病基因表达谱。 Objective To apply apriori algorithm to mine the gene expression profiles will produce a huge number of association rules. A new approach to organize the mined association rules on the modularized gene functional category level is proposed. Methods The association rules containing the genes frequently appearing in the head parts of all the association rules were selected and grouped together. The gene functional categories, which were non-randomly enriched with the genes in the body parts of each grouped association rules, were found with statistical test and were used to form the body parts of the functional modular level association rules. Results By applying this new method to NCI60 data set, some cancer associated genes and their related functional category level expression association rules were discovered. Conclusion Gene expression profiles of diseases can be efficiently mined by association rules on the modularized gene functional category level.
出处 《第三军医大学学报》 CAS CSCD 北大核心 2006年第13期1370-1373,共4页 Journal of Third Military Medical University
基金 国家自然科学基金资助项目(30370798 30170515 30370388) 国家高技术研究发展计划("863")资助项目(2003AA2Z20512002AA2Z2052) 黑龙江科技攻关资助重点项目(GB03C602-4) 哈尔滨市科技攻关资助项目(2003AA3CS113) 黑龙江自然科学基金资助项目(F0177)~~
关键词 基因芯片 关联规则 GENE ONTOLOGY 癌症 gene chip association rules gene ontology cancer
  • 相关文献

参考文献10

  • 1BERRAR D, DUBITZKY W, GRANZOW M, et al. Analysis of Gene Expression and Drug Activity Data by Knowledge-based Association Mining[C]//Proceedings of Critical Assessment of Microarray Data Analysis Techniques (CAMDA'01 ), 2001 : 25 -28.
  • 2ALEXANDER T, GEDIMINAS A. Handling very large numbers of association rules in the analysis of microarray data [C]//KDD. New York : ACM, 2002 : 396 - 404.
  • 3ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium [J]. Nat Genet, 2000, 25 ( 1 ) : 25 - 29.
  • 4AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in Large Databases [C]//Proceedings of the 20th International conference on Very Large Databases (VLDB). Santiago: Morgan Kaufmann Publishers, 1994:487 -499.
  • 5ROSS D T, SCHERF U, EISEN M B, et al. Systematic variation in gene expression patterns in human cancer cell lines [J]. Nat Genet,2000, 24(3) : 227 -235.
  • 6KHATRI P, DRAGHICI S, OSTERMEIER G C, et al. Profiling gene expression using onto-express [J]. Genomics, 2002, 79 (2) : 266 - 270.
  • 7LUKAS J, PARRY, D, AAGAARD L, et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16[J]. Nature, 1995,375(6531 ) : 503 -506.
  • 8CRAWFORD H C, MATRISIAN L M, LIAW L. Distinct roles of osteopontin in host defense activity and tumor survival during squamous cell carcinoma progression in vivo[J]. Cancer Res, 1998, 58(22):5206 -5215.
  • 9LIAW L, CRAWFORD H C. Functions of the extracellular matrix and matrix degrading proteases during tumor progression [J]. Braz J Med Biol Res, 1999, 32(7) : 805 -812.
  • 10BROWN L F, PAPADOPOULOS-SERGIOU A, BERSE B, et al. Osteopontin expression and distribution in human carcinomas[J]. Am J Pathol, 1994, 145(3):610-623.

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部