摘要
1990~1992年间对杭州市郊区青菜上桃蚜(Myzuspersicae)、萝卜蚜(Lipaphiserysimi)及其混合种群的田间近100组调查数据,利用每样方(株)虫口不超过数阈值T(分别为0、1、5、10、20、30、40)头蚜虫的植株比例(PT)与种群密度(m,头·株-1)的关系,通过拟合经验公式ln(m)=a+bln[-ln(PT)]而设计的二项式抽样.通过对三者不同数阈值(T)的回归决定系数(r2)、种群密度的回归估计方差(Var(m))、抽样精度(以d表示)和实际应用等的比较,结果表明当桃蚜种群处于较高密度即m≥10时,其理想的T值为30;当萝卜蚜种群处于较高密度即m≥5时,其理想的T值为10;而它们的混合种群未得到其理想的T值.数阈值T为30和10可分别用于桃蚜和萝卜蚜的二项式抽样设计.而传统的二项式抽样即0~1抽样由于应用于小白菜上菜蚜的抽样设计时产生很大的误差,不宜采用.
Field sampling of aphids on Brassica campestris ssp. chinensis was conducted in the suburbs of Hangzhou from 1990 to 1992. The mean aphid density (m, number of aphids per plant), variance (s2) and the proportion of plants with no more than T defined as tally threshold (=0, 1, 5, 10, 20, 30 and 40 per plant) aphids(PT), are calculated. There are 57 estimates for Myzus persicae , 66 estimates for Lipaphis erysimi, and 38 estimates for their mixed populations. For each of two aphids and mixed population, the empirical relationship between m and PT is developed using the parameters estimated from linear regression of ln (m) on In[-ln (PT)]. The determination coefficients r2, prediction variance of m from PT, Var(m) , and sample precision denoted as d obtained from different T values are compared. The results indicate that the optimal T for M. persicae should be 30 when its m≥ 10. and that for L. erysimi should be 10 when its m≥5. However,at low population densities. no adequate T values are found for either of the two aphids. Moreover, no acceptable T is found for the mixed population. It is suggested that the tally thresholds of 30 and 10 respectively for M. persicae and L. erysimi can be used for establishing binomial sampling models under relatively high population densities. The results also show that conventional binomial sampling (0~1) method produces unacceptable low levels of sampling precision, and could not be used in sampling of the two aphids.
出处
《应用生态学报》
CAS
CSCD
1996年第2期191-196,共6页
Chinese Journal of Applied Ecology
基金
国家自然科学基金
霍英东教育基金会青年教师基金
关键词
菜蚜
二项式抽样
精度分析
Myzus persicae, Lipaphis erysimi, Brassica campestris ssp. chinensis, Binomial sampling, Precision analysis.