期刊文献+

Conformal Invariant Asymptotic Expansion Approach for Solving (3+1)-Dimensional JM Equation 被引量:1

Conformal Invariant Asymptotic Expansion Approach for Solving (3+1)-Dimensional JM Equation
下载PDF
导出
摘要 The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, which are conformal invariant and possess Painlevé property, the approximate solutions are obtained for the JM equation, containing not only one-soliton solutions but also periodic solutions and multi-soliton solutions. Some approximate solutions happen to be exact and some approximate solutions can become exact by choosing relations between the parameters properly.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第6期979-984,共6页 理论物理通讯(英文版)
基金 The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604036 and State Key Laboratory of 0il/Gas Reservoir Geology and Exploitation "PLN0402" The authors would like to thank Prof. Sen-Yue Lou for his help and discussion.
关键词 (3+1)-dimensional Jimbo-Miwa (JM) equation conformal invariant asymptotic expansion approach Painlevé property approximate and exact solutions (3+1)维Jimbo-Miwa方程 共形不变量渐近扩展逼近 Painlevé特性 近似解 精确解
  • 相关文献

参考文献1

共引文献2

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部