期刊文献+

Optimal Switching Control for Nonlinear Systems in A Finite Duration

Optimal Switching Control for Nonlinear Systems in A Finite Duration
下载PDF
导出
摘要 This paper proposes a optimal control problem for a general nonlinear systems with finitely many admissible control settings and with costs assigned to switching of controls. With dynamic programming and viscosity solution theory we show that the switching lower-value function is a viscosity solution of the appropriate systems of quasi-variational inequalities(the appropriate generalization of the Hamilton-Jacobi equation in this context) and that the minimal such switching-storage function is equal to the continuous switching lower-value for the game. With the lower value function a optimal switching control is designed for minimizing the cost of running the systems.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期185-195,共11页 数学季刊(英文版)
基金 Supported by the SRFEB of Henan Province(2003110002)
关键词 switching systems optimal control viscosity solution value function cost function 开关系统 最佳控制 粘度解 价值函数 成本函数
  • 相关文献

参考文献19

  • 1ARKIN R C. Behavior Based Robotics[M]. The MIT Press, Cambridge,MA,1998.
  • 2EGERSTEDT M. Behavior Based Robotics Using Hybrid Automata, Lecture Notes ia Computer Science:Hybrid Systems III, Computation and Control, Springer Verlag[C]. pp.103-116, Pittsburgh, PA, March,2000.
  • 3BOCCADORO M, VALIGI P. A Modelling Approach for the Dynamic Scheduling Problem of Manufacturing Systems with Non-Negligible Setup Times and Finite Buffers[C]. 42nd IEEE Conference on Decision and Control,Maui, Hawaii, USA Dec. 2003.
  • 4CASSANDRAS C G, PEPYNE D L, WAND Y.Optimal control of a class of hybrid systems[J]. IEEE Trans.Automat. Control, 2001, 46: 389-415.
  • 5FLIELLER D, LOUIS J P, Barrenscheen J. General Sampled Data Modelling of Power Systems Supplied Static Converter with Digital and Analog Controller[J]. Mathematics and Computer in Simulation, VOL 1998, 46: 373-385.
  • 6VERRIST E. Regularization Method for OPtimally Switched and Impulsive, Systems with Biomedical Application(I)[C]. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, 2003.
  • 7BRANICKY M S, BORKAR V S, MITTER S K. A unified framework for hybrid control: Model and optimal control theory[J]. IEEE Trans. Automat. Control, 1998, 43. 31-45.
  • 8BALL J A, CHUDOUNG J, DAY M V. Robust Optimal Switching Control for Nonlinear systems[J]. SIAM J. Control Optim., 2002, 41: 900-931.
  • 9LIONS P L. Generalized solutions of Hamilton-Jacobi equation, Pitman Research Notes in Maths[M]. 69,Pitman, Boston.
  • 10YOUNG J. Dynamic Programming Methods And Hamilton-Jacobi-Bellman Equation. Shanghai[M]. Shanghai: Science and Technology Press, 1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部