Optimal Switching Control for Nonlinear Systems in A Finite Duration
Optimal Switching Control for Nonlinear Systems in A Finite Duration
摘要
This paper proposes a optimal control problem for a general nonlinear systems with finitely many admissible control settings and with costs assigned to switching of controls. With dynamic programming and viscosity solution theory we show that the switching lower-value function is a viscosity solution of the appropriate systems of quasi-variational inequalities(the appropriate generalization of the Hamilton-Jacobi equation in this context) and that the minimal such switching-storage function is equal to the continuous switching lower-value for the game. With the lower value function a optimal switching control is designed for minimizing the cost of running the systems.
基金
Supported by the SRFEB of Henan Province(2003110002)
参考文献19
-
1ARKIN R C. Behavior Based Robotics[M]. The MIT Press, Cambridge,MA,1998.
-
2EGERSTEDT M. Behavior Based Robotics Using Hybrid Automata, Lecture Notes ia Computer Science:Hybrid Systems III, Computation and Control, Springer Verlag[C]. pp.103-116, Pittsburgh, PA, March,2000.
-
3BOCCADORO M, VALIGI P. A Modelling Approach for the Dynamic Scheduling Problem of Manufacturing Systems with Non-Negligible Setup Times and Finite Buffers[C]. 42nd IEEE Conference on Decision and Control,Maui, Hawaii, USA Dec. 2003.
-
4CASSANDRAS C G, PEPYNE D L, WAND Y.Optimal control of a class of hybrid systems[J]. IEEE Trans.Automat. Control, 2001, 46: 389-415.
-
5FLIELLER D, LOUIS J P, Barrenscheen J. General Sampled Data Modelling of Power Systems Supplied Static Converter with Digital and Analog Controller[J]. Mathematics and Computer in Simulation, VOL 1998, 46: 373-385.
-
6VERRIST E. Regularization Method for OPtimally Switched and Impulsive, Systems with Biomedical Application(I)[C]. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, 2003.
-
7BRANICKY M S, BORKAR V S, MITTER S K. A unified framework for hybrid control: Model and optimal control theory[J]. IEEE Trans. Automat. Control, 1998, 43. 31-45.
-
8BALL J A, CHUDOUNG J, DAY M V. Robust Optimal Switching Control for Nonlinear systems[J]. SIAM J. Control Optim., 2002, 41: 900-931.
-
9LIONS P L. Generalized solutions of Hamilton-Jacobi equation, Pitman Research Notes in Maths[M]. 69,Pitman, Boston.
-
10YOUNG J. Dynamic Programming Methods And Hamilton-Jacobi-Bellman Equation. Shanghai[M]. Shanghai: Science and Technology Press, 1992.
-
1刘玉忠,赵军.具有m个开关系统的渐近稳定性[J].控制理论与应用,2001,18(5):745-747. 被引量:5
-
2康剑灵,张晖,叶华文.一类级联系统的微分无源性[J].东华大学学报(自然科学版),2015,41(6):857-861.
-
3李振宇,魏叶梅,王映锋,向红军.酿酒葡萄的分级[J].湘南学院学报,2013,34(2):116-121.
-
4单原子光开关系统[J].光学精密机械,2013,0(4):12-12.
-
5刘利琴,吴志强,等.一种微静电开关系统的非线性动力学[J].非线性动力学学报,2002,9(3):132-139. 被引量:2
-
6张秀华,张庆灵.线性广义系统的无源控制[J].控制与决策,2006,21(1):81-83. 被引量:9
-
7张秀华,张庆灵.线性广义系统的鲁棒无源控制[J].计算技术与自动化,2005,24(3):1-3. 被引量:1
-
8刘玉忠,赵军.一类非线性开关系统二次稳定性的充要条件[J].自动化学报,2002,28(4):596-600. 被引量:6
-
9单原子光开关系统或成量子信息通讯有力新工具[J].军民两用技术与产品,2014(1):29-29.
-
10李宁,程礼.压电智能结构的一类非线性控制器设计方法[J].空军工程大学学报(自然科学版),2010,11(1):87-90.