期刊文献+

一种基于差别矩阵的决策表规则提取算法 被引量:2

One Rule Abstracting Algorithm Based on Discernibility Matrix
下载PDF
导出
摘要 从属性约简后的数据集中提取规则实质上就是决策规则的约简计算,一般利用启发信息进行约简计算。提出了一种新的基于差别矩阵的决策表规则提取算法,首先从差别矩阵得到差别集,结合置信度要求得到候选规则集,然后开始提取规则并逐步调整候选规则集,最终提取出决策规则。该算法避免了规则提取过程中条件属性挑选和扩展的计算,并能够快速提取出决策表中存在的最简决策规则,计算实例表明其具有决策规则提取的工程实用性。 Extracting rules from the data set with reduced attributes is actually a reduction computation of decision rules, which is usually based on heuristic algorithm. In this paper, a new rule abstracting algorithm based on discernibility matrix has been presented. This algorithm first gets discernibility sets from discernibility matrix, generates candidate rule sets with the restriction of classification accuracy, and then begins to abstract rules from datasets. All the rules hidden in the decision dataset can be obtained efficiently by this algorithm while the computation of collecting and expanding candidate attributes doesn't need anymore. And case study indicates that it is valuable on the practicability of rule generation,
作者 吕韶 谢先明
出处 《现代机械》 2006年第3期72-74,76,共4页 Modern Machinery
关键词 粗糙集 差别矩阵 规则提取 分类精度 rough set discernibility matrix rules extraction classification accuracy
  • 相关文献

参考文献9

二级参考文献30

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 3苗夺谦.Rough Set理论及其在机器学习中的应用研究[博士学位论文].北京:中国科学院自动化研究所,1997..
  • 4Hu X H. Knowledge Discovery in Database an Attribte-Oriented Rough Sets Approach[D]. University of Regina, Canada, 1995.
  • 5Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data[M]. Boston: Kluwer Academic Publishers, 1991.1.
  • 6Wangjue. Ananlysis on Attribute Reduction Strategies of Rough Set[J].Journal of Computer Science and Technology, 1998.
  • 7Wangjue. Investigation on AQ11, ID3 and the Principle of Discernibility Matrix[J]. Journal of Computer Science and Technology, 2001.
  • 8陆汝钤.世纪之交的知识工程和知识科学[M].北京:清华大学出版社,2001..
  • 9刘同明.数据挖掘技术与应用[M].北京:国防科技出版社,2000..
  • 10王珏,J Comput Sci Technol,1998年,13卷,2期,189页

共引文献745

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部