期刊文献+

环形浅池内硅熔体中的热流体波 被引量:1

Hydrothermal wave in shallow annular silicon melt pool
下载PDF
导出
摘要 为了了解工业Czochralski炉内硅熔体表面轮型的基本特征,对环形浅池内硅熔体的热毛细-浮力对流进行了三维数值模拟,硅熔池内径为15 mm,外径为50 mm,深度为3 mm,熔池外壁被加热,内壁被冷却,底部固壁和顶部自由表面均绝热或者允许一个垂直方向的传热。模拟结果表明,当径向温差较小时,熔池内会产生稳定的单胞热毛细-浮力流动,随着温差的增大,流动将转变为三维振荡流动,在熔体自由表面会出现沿周向运动的轮型,小的垂直方向的热流密度(3W/cm2)对这种振荡流动没有大的影响。同时,讨论了流动和温度波动的特征,并确定了振荡流动的临界条件。 In order to understand the nature of surface spoke patterns on the silicon melt in industrial Czochralski furnaces, a series of unsteady three-dimensional numerical simulations were conducted for thermocapillary-buoyancy flow of silicon melt in an annular pool (inner radius ri = 15 mm, outer radius ro= 50 mm, depth d= 3 mm). The pool is heated from the outer cylindrical wall and cooled at the inner wall. Bottom and top surfaces either are adiabatic or allow heat transfer in the vertical direction. Results show that a small temperature difference in the radial direction generates steady roll-cell thermocapillary- buoyancy flow. With large temperature difference, the simulation can predict three-dimensional oscillatory flow, which is characterized by spoke patterns traveling in the azimuthal direction. The small vertical heat flux (3W/cm^2) does not have significant effects on the characteristics of this oscillatory flow. Details of the flow and temperature disturbances are discussed and the critical conditions for the onset of the oscillatory flow are determined.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2006年第3期295-300,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50476042)资助项目
关键词 热毛细-浮力流动 热流体波 硅熔体 数值模拟 环形池 thermocapillary-buoyancy flow hydrothermal wave silicon melt numerical simulation annular pool
  • 相关文献

参考文献27

  • 1SMITH M K, DAVIS S H. Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities[J]. J Fluid Mech, 1983,132 : 119-144.
  • 2LAURE P, ROUX B. Linear and non-linear analysis of the Hadley eireulation [J ]. J Crystal Growth,1989,97: 226-234.
  • 3PARMENTIER P M, REYNIER V C, LEBON G.Buoyant-thermocapillary instabilities in medium Prandtl number fluid layers subject to a horizontal temperature gradient[J], Int J Heat Mass Transfer,1993,36: 2417-2427.
  • 4GARNIER N, NORMAND C. Effect of curvature on hydrothermal waves instability of radial thermocapillary flows[J]. C R Acad Paris, t. 2, Series IV-Phys, 2001,2 : 1227-1233.
  • 5VILLERS D, PLATTEN J K. Coupled buoyancy and Marangoni convection in acetone, experiments and comparison with numerical simulations [J]. J Fluid Mech, 1992,234:487-510.
  • 6DAVIAUD F, VINCE J M. Traveling waves in a fluid layer subjected to a horizontal temperature gradient[J]. Phys Rev E, 1993,48: 4432-4436.
  • 7BRAUNSFURTH M, HONSY G M. Combined thermoeapillary-buoyaney convection in a cavity. Part II. An experimental study[J]. Phys Fluids, 1997,9:1277-1286.
  • 8GARCIMARTIN A, MUKOLOBWIEZ N, DAVI-AUD F. Origin of waves in surface-tension-driven convection[J]. Phys Rev, E, 1997,56: 1699-1705.
  • 9RILEY R J, NEITZEL G P. Instability of thermocapillary-buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities[J]. J Fluid Mech, 1998,359 : 143-164.
  • 10BENZ S, HINTZ P, RILEY R J. Instability of thermoeapillary-buoyaney convection in shallow layers.Part 2. Suppression of hydrothermal waves[J]. J Fluid Mech , 1998,359:165-180.

同被引文献16

  • 1石万元,李友荣,曾丹苓,今石宣之.环形浅液层内热流体波的可视化实验研究[J].工程热物理学报,2007,28(z2):101-104. 被引量:3
  • 2HU W R, IMAISHI N. Thermocapillary flow in an annular liquid layer painted on a moving fiber[J]. Int J Heat Mass Transfer,2000,43 :4457-4466.
  • 3SHIH T, MEGARIDIS C M. Thermocapillary flow effects on convective droplet evaporation[J]. Int J Heat Mass Transfer ,1996,39 : 247-257.
  • 4CHANG C E, WILCOX W R. Analysis of surface tension driven flow in floating zone melting[J]. Int J Hear Mass Transfer, 1976,19 : 355-366.
  • 5SCWABE D, SCHARMANN A, PLEISSER F, et al. Experiments on surface tension driven flow in floating zone melting [J ]. J Crystal Growth, 1978, 43:305-312.
  • 6AZAMI T, NAKAMURA S, EGUCHI M. The role of surface-tension-driven flow in the formation of a surface pattern on a Czochralski silicon melt[J]. J Crystal Growth, 2001,233 : 99-107.
  • 7LI Y R, PENG L, AKIYAMA Y, et al. Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool [J]. J Crystal Growth, 2003,259: 374-387.
  • 8LI Y R, IMAISHI N, PENG L, et al. Thermocapillary flow in a shallow molten silicon pool with Cz configuration[J]. J Crystal Growth, 2004,266: 88- 95.
  • 9SIM B C, ZEBIB A, SCHWABE D. Oscillatory thermocapillary convection in open cylindrical annuli. Part 2. simulations[J]. J Fluid Mech, 2003,491: 259-274.
  • 10Van Der Vorst H A. Bi-CGSTAB.. a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[J]. SIAMJ Sci Star Comput, 1992,13:631-644.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部