期刊文献+

基于扩展方程法的电力系统双参数分岔边界的计算 被引量:2

An extended equations method to compute two-dimensional parameter bifurcations boundary in power systems
下载PDF
导出
摘要 通过对电力系统某些模型的研究,发现系统在鞍结分岔(SNB)前会经历Hopf分岔(HB)的失稳,采用Hopf分岔理论研究电力系统的稳定运行问题,能够比较全面地考虑非线性系统的非线性性态,深入揭示系统失稳的机理。然而以往的间接法在计算Hopf分岔点时,每次改变参数都要计算系统雅可比(Jacob ian)矩阵的特征值并判断是否出现一对实部为零的共轭虚根,导致计算量较大。而直接法对初值的要求比较严格。文中引入双参数构造系统的扩展方程求解SNB分岔曲线,并寻找系统的高阶分岔点TB点,由于TB点是SNB曲线与HB曲线的交点,以该点为初始值,采用扩展方程可以直接求解双参数下的Hopf分岔曲线,进而得到系统在双参数下的分岔边界。 By much research on power system models, the system will experience Hopf Bifurcation(HB) before the Saddle-Node Bi- furcation (SNB). By using Hopf Bifurcation theory to analyze the stability operation of electric power system, the nonlinear characteristics of nonlinear systems can be totally involved and the instability reasons for systems is revealed deeply. While to calculate the Hopf Bifurcation point, the previous methods involve a great deal of computation of the eigenvalues of system's Jacobian matrix and decision whether the real parts of the eigenvalues were zero when there exist any changes of the parameters in the system. In this paper, by using two parameters, the extended equations is set up for getting SNB curve and the advanced bifurcation point, TB point. Since the TB point is the intersection point of the SNB curve and the Hopf Bifurcation curve, the Hopf Bifurcation curve of the system can be calculated by setting the TB point as the initial value of the extended equations. Furthermore, the two-dimensional parameter bifurcation boundary of the system can be obtained. This project is supported by National Natural Science Foundation of China( No. 50337010) and Special Scientific and Research Funds for Doctoral Speciality of Institution of Higher Learning ( No. 200205061004).
出处 《继电器》 CSCD 北大核心 2006年第12期20-24,共5页 Relay
基金 国家自然科学基金资助项目(50337010) 高等学校博士学科点专项科研基金资助项目(20020561004)
关键词 非线性分岔理论 HOPF分岔 扩展方程 TB点 nonlinear bifurcation theory Hopf Bifurcation extended equation TB point
  • 相关文献

参考文献9

二级参考文献65

  • 1程浩忠,馀利野直人.电力系统电压崩溃临界状态和快速算法[J].中国电机工程学报,1996,16(3):165-170. 被引量:7
  • 2彭志炜,胡国根,韩祯祥.应用分支理论研究电力系统电压稳定性[J].电力系统自动化,1997,21(2):42-44. 被引量:8
  • 3陆启韶.常微分方程的定性理论和分叉[M].北京:北京航空航天大学出版社,1989..
  • 4[1]Taylor C W.Power system voltage stability[M].McGraw-Hill,1994.
  • 5[2]Dobson I,Chiang H D.Towards a theory of voltage collapse in electric power systems[J].Systems & Control Letters,1989,13(3):253-262.
  • 6[3]Ajjarapu A,Lee B.Bifurcation theory and its application to nonlinear dynamical phenomena in an electric power system[J].IEEE Trans on Power Systems,1992,7(1):424-431.
  • 7[4]Abed E H,Wang H O,Alexander J C,et al. Dynamic bifurcations in a power system model exhibiting voltage collapse[J].International Journal of Bifurcation and Chaos,1993,3(5):1169-1176.
  • 8[5]Wang H O,Abed E H,Hamdan A M A.Bifurcations,chaos,and crises in voltage collapse of a model power system[J].IEEE Trans on Circuit System(I),1994,41(3):294-302.
  • 9[6]Ohta H,Ueda Y.Global bifurcation caused by unstable limit cycle leading to voltage collapse in an electric power system[J].Chaos, Solitions & Fractals,1998,9(6):825-843.
  • 10[7]Heydeman J,Tripathy S C,Sluis L V D.Digital and experimental study of voltage collapse and instability in power system[J].Int. J. of Electrical Power and Energy System,2000,22(4):303-311.

共引文献128

同被引文献23

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部